1,098 research outputs found

    Scott induction and equational proofs

    Get PDF
    AbstractThe equational properties of the iteration operation in Lawvere theories are captured by the notion of iteration theories axiomatized by the Conway identities together with a complicated equation scheme, the “commutative identity”. The first result of the paper shows that the commutative identity is implied by the Conway identities and the Scott induction principle formulated to involve only equations. Since the Scott induction principle holds in free iteration theories, we obtain a relatively simple first order axiomatization of the equational properties of iteration theories. We show, by means of an example that a simplified version of the Scott induction principle does not suffice for this purpose: There exists a Conway theory satisfying the scalar Scott induction principle which is not an iteration theory. A second example shows that there exists an iteration theory satisfying the scalar version of the Scott induction principle in which the general form fails. Finally, an example is included to verify the expected fact that there exists an iteration theory violating the scalar Scott induction principle. Interestingly, two of these examples are ordered theories in which the iteration operation is defined via least pre-fixed points

    Partial Horn logic and cartesian categories

    Get PDF
    A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modified. It is developed here in its minimal form, with equality and conjunction, as “partial Horn logic”. Various kinds of logical theory are equivalent: partial Horn theories, “quasi-equational” theories (partial Horn theories without predicate symbols), cartesian theories and essentially algebraic theories. The logic is sound and complete with respect to models in , and sound with respect to models in any cartesian (finite limit) category. The simplicity of the quasi-equational form allows an easy predicative constructive proof of the free partial model theorem for cartesian theories: that if a theory morphism is given from one cartesian theory to another, then the forgetful (reduct) functor from one model category to the other has a left adjoint. Various examples of quasi-equational theory are studied, including those of cartesian categories and of other classes of categories. For each quasi-equational theory another, , is constructed, whose models are cartesian categories equipped with models of . Its initial model, the “classifying category” for , has properties similar to those of the syntactic category, but more precise with respect to strict cartesian functors

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    A first-order logic for string diagrams

    Get PDF
    Equational reasoning with string diagrams provides an intuitive means of proving equations between morphisms in a symmetric monoidal category. This can be extended to proofs of infinite families of equations using a simple graphical syntax called !-box notation. While this does greatly increase the proving power of string diagrams, previous attempts to go beyond equational reasoning have been largely ad hoc, owing to the lack of a suitable logical framework for diagrammatic proofs involving !-boxes. In this paper, we extend equational reasoning with !-boxes to a fully-fledged first order logic called with conjunction, implication, and universal quantification over !-boxes. This logic, called !L, is then rich enough to properly formalise an induction principle for !-boxes. We then build a standard model for !L and give an example proof of a theorem for non-commutative bialgebras using !L, which is unobtainable by equational reasoning alone.Comment: 15 pages + appendi

    Robustness of Equations Under Operational Extensions

    Full text link
    Sound behavioral equations on open terms may become unsound after conservative extensions of the underlying operational semantics. Providing criteria under which such equations are preserved is extremely useful; in particular, it can avoid the need to repeat proofs when extending the specified language. This paper investigates preservation of sound equations for several notions of bisimilarity on open terms: closed-instance (ci-)bisimilarity and formal-hypothesis (fh-)bisimilarity, both due to Robert de Simone, and hypothesis-preserving (hp-)bisimilarity, due to Arend Rensink. For both fh-bisimilarity and hp-bisimilarity, we prove that arbitrary sound equations on open terms are preserved by all disjoint extensions which do not add labels. We also define slight variations of fh- and hp-bisimilarity such that all sound equations are preserved by arbitrary disjoint extensions. Finally, we give two sets of syntactic criteria (on equations, resp. operational extensions) and prove each of them to be sufficient for preserving ci-bisimilarity.Comment: In Proceedings EXPRESS'10, arXiv:1011.601
    • …
    corecore