632 research outputs found

    A CyberGIS Integration and Computation Framework for High‐Resolution Continental‐Scale Flood Inundation Mapping

    Get PDF
    We present a Digital Elevation Model (DEM)-based hydrologic analysis methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS scientific workflow in which a 1/3rd arc-second (10m) Height Above Nearest Drainage (HAND) raster data for the conterminous U.S. (CONUS) was computed and employed for subsequent inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration and scalable computing of the entire inundation mapping process on a hybrid supercomputing architecture. The first 1/3rd arc-second CONUS HAND raster dataset was computed in 1.5 days on the CyberGIS ROGER supercomputer. The inundation mapping process developed in our exploratory study couples HAND with National Water Model (NWM) forecast data to enable near real-time inundation forecasts for CONUS. The computational performance of HAND and the inundation mapping process was profiled to gain insights into the computational characteristics in high-performance parallel computing scenarios. The establishment of the CFIM computational framework has broad and significant research implications that may lead to further development and improvement of flood inundation mapping methodologies

    Annual Report: Fiscal Year 2010

    Get PDF

    CC*IIE Networking Infrastructure - NSF Award #1440646 Project Description

    Get PDF
    CC*IIE Networking Infrastructure: Accelerating science, translational research, and collaboration at the University of Pittsburgh through the implementation of network upgrades

    A survey of computational steering environments

    Get PDF
    Computational steering is a powerful concept that allows scientists to interactively control a computational process during its execution. In this paper, a survey of computational steering environments for the on-line steering of ongoing scientific and engineering simulations is presented. These environments can be used to create steerable applications for model exploration, algorithm experimentation, or performance optimization. For each environment the scope is identified, the architecture is summarized, and the concepts of the user interface is described. The environments are compared and conclusions and future research issues are given

    Precision-Aware application execution for Energy-optimization in HPC node system

    Get PDF
    Power consumption is a critical consideration in high performance computing systems and it is becoming the limiting factor to build and operate Petascale and Exascale systems. When studying the power consumption of existing systems running HPC workloads, we find that power, energy and performance are closely related which leads to the possibility to optimize energy consumption without sacrificing (much or at all) the performance. In this paper, we propose a HPC system running with a GNU/Linux OS and a Real Time Resource Manager (RTRM) that is aware and monitors the healthy of the platform. On the system, an application for disaster management runs. The application can run with different QoS depending on the situation. We defined two main situations. Normal execution, when there is no risk of a disaster, even though we still have to run the system to look ahead in the near future if the situation changes suddenly. In the second scenario, the possibilities for a disaster are very high. Then the allocation of more resources for improving the precision and the human decision has to be taken into account. The paper shows that at design time, it is possible to describe different optimal points that are going to be used at runtime by the RTOS with the application. This environment helps to the system that must run 24/7 in saving energy with the trade-off of losing precision. The paper shows a model execution which can improve the precision of results by 65% in average by increasing the number of iterations from 1e3 to 1e4. This also produces one order of magnitude longer execution time which leads to the need to use a multi-node solution. The optimal trade-off between precision vs. execution time is computed by the RTOS with the time overhead less than 10% against a native execution

    Airborne dust: from R and D to operational forecast. 2013-2015 Activity Report of the SDS-WAS Regional Center for Northern Africa, Middle East and Europe

    Get PDF
    The 17th World Meteorological Congress designated the consortium of AEMET and Barcelona Supercomputing Center (BSC) to host the first WMO Regional Meteorological Center specialized on Atmospheric Sand and Dust Forecast. The new center operationally generates and distributes dust forecasts under the name of Barcelona Dust Forecast Center. This decision recognizes the research activities and the products implemented by AEMET and BSC as a valuable contribution to the WMO Sand and Dust Storm – Warning Advisory and Assessment System (SDS-WAS). The services provided by the Barcelona Dust Forecast Center allow for the development of strategies to minimize the severe impacts caused by atmospheric dust on lives and property in Northern Africa, Middle East and Europe. This report summarizes the activities of the SDS-WAS Regional Center for Northern Africa, Middle East and Europe for 2013-2015 and shows the great success of the SDS-WAS project

    access: v.10, no.02, Summer 1996

    Get PDF
    published or submitted for publicatio

    ASTRAL PROJECTION: THEORIES OF METAPHOR, PHILOSOPHIES OF SCIENCE, AND THE ART O F SCIENTIFIC VISUALIZATION

    Get PDF
    This thesis provides an intellectual context for my work in computational scientific visualization for large-scale public outreach in venues such as digitaldome planetarium shows and high-definition public television documentaries. In my associated practicum, a DVD that provides video excerpts, 1 focus especially on work I have created with my Advanced Visualization Laboratory team at the National Center for Supercomputing Applications (Champaign, Illinois) from 2002-2007. 1 make three main contributions to knowledge within the field of computational scientific visualization. Firstly, I share the unique process 1 have pioneered for collaboratively producing and exhibiting this data-driven art when aimed at popular science education. The message of the art complements its means of production: Renaissance Team collaborations enact a cooperative paradigm of evolutionary sympathetic adaptation and co-creation. Secondly, 1 open up a positive, new space within computational scientific visualization's practice for artistic expression—especially in providing a theory of digi-epistemology that accounts for how this is possible given the limitations imposed by the demands of mapping numerical data and the computational models derived from them onto visual forms. I am concerned not only with liberating artists to enrich audience's aesthetic experiences of scientific visualization, to contribute their own vision, but also with conceiving of audiences as co-creators of the aesthetic significance of the work, to re-envision and re-circulate what they encounter there. Even more commonly than in the age of traditional media, on-line social computing and digital tools have empowered the public to capture and repurpose visual metaphors, circulating them within new contexts and telling new stories with them. Thirdly, I demonstrate the creative power of visaphors (see footnote, p. 1) to provide novel embodied experiences through my practicum as well as my thesis discussion. Specifically, I describe how the visaphors my Renaissance Teams and I create enrich the Environmentalist Story of Science, essentially promoting a counter-narrative to the Enlightenment Story of Science through articulating how humanity participates in an evolving universal consciousness through our embodied interaction and cooperative interdependence within nested, self-producing (autopoetic) systems, from the micro- to the macroscopic. This contemporary account of the natural world, its inter-related systems, and their dynamics may be understood as expressing a creative and generative energy—a kind of consciousness-that transcends the human yet also encompasses it

    Semantic Services Grid in Flood-forecasting Simulations

    Get PDF
    Flooding in the major river basins of Central Europe is a recurrent event affecting many countries. Almost every year, it takes away lives and causes damage to infrastructure, agricultural and industrial production, and severely affects socio-economic development. Recurring floods of the magnitude and frequency observed in this region is a significant impediment, which requires rapid development of more flexible and effective flood-forecasting systems. In this paper we present design and development of the flood-forecasting system based on the Semantic Grid services. We will highlight the corresponding architecture, discovery and composition of services into workflows and semantic tools supporting the users in evaluating the results of the flood simulations. We will describe in detail the challenges of the flood-forecasting application and corresponding design and development of the service-oriented model, which is based on the well known Web Service Resource Framework (WSRF). Semantic descriptions of the WSRF services will be presented as well as the architecture, which exploits semantics in the discovery and composition of services. Further, we will demonstrate how experience management solutions can help in the process of service discovery and user support. The system provides a unique bottom-up approach in the Semantic Grids by combining the advances of semantic web services and grid architectures
    corecore