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ABSTRACT: We present a Digital Elevation Model (DEM)-based hydrologic analysis 
methodology for continental flood inundation mapping (CFIM), implemented as a cyberGIS 
scientific workflow in which a 1/3rd arc-second (10m) Height Above Nearest Drainage (HAND) 
raster data for the conterminous U.S. (CONUS) was computed and employed for subsequent 
inundation mapping. A cyberGIS framework was developed to enable spatiotemporal integration 
and scalable computing of the entire inundation mapping process on a hybrid supercomputing 
architecture. The first 1/3rd arc-second CONUS HAND raster dataset was computed in 1.5 days 
on the CyberGIS ROGER supercomputer. The inundation mapping process developed in our 
exploratory study couples HAND with National Water Model (NWM) forecast data to enable 
near real-time inundation forecasts for CONUS. The computational performance of HAND and 
the inundation mapping process was profiled to gain insights into the computational 
characteristics in high-performance parallel computing scenarios. The establishment of the CFIM 
computational framework has broad and significant research implications that may lead to 
further development and improvement of flood inundation mapping methodologies.  

(KEY TERMS: computational methods, cyberGIS, data management, geospatial analysis, height 
above nearest drainage (HAND), inundation mapping, streamflow) 
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INTRODUCTION 

 

In August 2016, the National Weather Service brought into operation the National Water 

Model (NWM) (U.S. National Oceanic and Atmospheric Administration (NOAA), National 

Water Model. Accessed March 10, 2017, http://water.noaa.gov/about/nwm), which forecasts the 

streamflow on approximately 2.7 million stream reaches covering about 5.2 million kilometers of 

rivers and streams of the conterminous United States (CONUS).  The academic community is 

collaborating with the National Weather Service to enhance NWM in a project called the 

National Flood Interoperability Experiment (NFIE) (Maidment, 2016a).  A key component of 

that project is to extend the forecasting of flood streamflow into forecasting of water depth and 

inundation extent at the continental scale. 

Central to this methodology is a technique called Height Above Nearest Drainage 

(HAND) (Rodda, 2005; Rennó et al., 2008; Nobre et al., 2011; Tesfa et al., 2011; Nobre et al., 

2016), which uses a Digital Elevation Model (DEM) to define the height of each cell in the land 

surface above the cell in the nearest stream to which the drainage from that land surface cell 

flows.  The HAND method is applied to the stream reaches used in NWM, which themselves are 

derived from the medium resolution NHDPlus dataset (US Geological Survey (USGS) and 

Environmental Protection Agency (EPA), NHDPlus. Accessed March 10, 2017, 

http://www.horizon-systems.com/nhdplus).  By combining NHDPlus with the USGS 3D 

Elevation Program (3DEP) dataset (USGS, 3DEP. Accessed March 10, 2017, 

https://nationalmap.gov/3DEP) at 1/3rd arc-second (about 10-meter) cell resolution, this paper 

shows how the HAND raster can be determined for the continental United States, and also how 

hydraulic geometry relationships and synthetic rating curves can be determined for each stream 

http://water.noaa.gov/about/nwm
http://water.noaa.gov/about/nwm
http://www.horizon-systems.com/nhdplus
http://www.horizon-systems.com/nhdplus
http://www.horizon-systems.com/nhdplus
https://nationalmap.gov/3DEP/
https://nationalmap.gov/3DEP/
https://nationalmap.gov/3DEP/
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reach so that the forecast streamflow can be converted to forecast depth for each stream reach, 

and then to flood inundation extent using the HAND approach. The combination of all these 

techniques is here referred to as Continental Flood Inundation Mapping (CFIM).  

The CFIM framework has two key components: a flood inundation model appropriate for 

continental-scale study and a scalable computational model that provides a platform where the 

methods, software, data, and results could be deployed and shared in a responsive way that 

fosters iterative collaboration for methodological development and validation. As well-known 

models such as those based on cross sections show poor scalability to continental scale (Zheng, 

2015), our companion paper (Zheng et al., 2017) proposes a continental flood inundation 

mapping methodology which estimates channel geometry properties and rating curves from 

high-resolution terrain data. In the companion paper, scientific challenges of CFIM are 

discussed. A comprehensive evaluation on model integrity and uncertainty related to space and 

time, stream scales, stream order, river types is also presented. 

This paper addresses the computational model component. Given the significant 

computational challenges for conducting the inundation mapping process at CONUS scale for 

these massive geospatial datasets (i.e., 3DEP DEM and NHDPlus), we develop a computational 

model based on cyberGIS (also known as geographic information science and systems based on 

advanced cyberinfrastructure) (Wang, 2010) to provide a scalable integration and computation 

framework that is able to create HAND maps using cyberinfrastructure resources. 

Computational challenges in regional- and continental-scale high resolution flood 

mapping have been discussed in David et al. (2013); Hodges (2013); and Tavakoly et al. (2017), 

and Snow et al. (2016). Snow et al. (2016) developed a computational forecast framework and a 

web-based visualization application to tackle similar NFIE questions. High-density ensemble 
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national-scale stream forecasts were produced by downscaling runoff forecasts generated by 

ECMWF and routing the runoff using the RAPID model (David et al., 2011). Streamflow 

forecasts are displayed using the Tethys Platform (Swain et al., 2015; Swain et al., 2016). In 

addition to obvious differences in inundation mapping methodology and focus, our 

computational model differs in the following aspects. First, our model is designed to achieve 

1/3rd arc-second or finer inundation mapping for CONUS and covers all 2.7 million reaches in 

NHDPlus from the beginning. Second, high-throughput computing is the only parallel computing 

model used in Snow et al. (2016), in which HTCondor (Bockelman et al., 2015) is used to 

employ multiple processors to compute the downscaling of ECMWF runoff forecast on multiple 

watersheds. We provide a more comprehensive parallelization to achieve both high throughput 

(via job scheduler and batch computing) and high performance (via TauDEM). Last, the 

cyberGIS approach for integrating massive data and computing resources and building online 

problem-solving environment provides an efficient and scalable hybrid supercomputing 

environment for tackling computational challenges in CFIM. A similar approach could also be 

used to enhance the ECMWF-RAPID computational forecast framework. 

Our cyberGIS framework addresses CFIM computational challenges through 

collaboration among NFIE, the National Science Foundation (NSF) CyberGIS software project 

(Wang et al., 2013), NSF HydroShare (Tarboton et al., 2014; Horsburgh et al., 2016), USGS, the 

NSF CyberGIS Facility (that houses the Resourcing Open Geospatial Education and Research 

(ROGER) supercomputer) (Wang, 2017), and the Extreme Science and Engineering Discovery 

Environment XSEDE (Towns et al., 2014). Our open source software solution constructs a 

cyberGIS workflow that couples the scalable and high-performance TauDEM software (Tesfa et 

al., 2011) for DEM-based hydrologic analysis and a collection of open source geospatial 
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software for pre- and post-processing of geospatial data. ROGER, which has a hybrid 

supercomputing architecture, provides an integrated high-performance data handling, analysis, 

modeling, and visualization platform for CFIM by coupling high-throughput computing (HTC), 

high-performance computing (HPC) and cloud computing. HAND for CONUS was computed in 

1.5 days on ROGER. 

The following sections describe computational challenges in the CFIM methodology. We 

demonstrate a cyberGIS integration model and a two-level parallel computing model as a holistic 

computational model for tackling these challenges. The effectiveness and performance of the 

computational model are illustrated through the computational experience and results obtained 

from the HAND and inundation mapping generation workflow.  We conclude with discussion of 

the advantages and limitations of our approach, and ideas for future work. 

DATA AND COMPUTATIONAL CHALLENGES 

The development of CFIM methodology is a multidisciplinary collaboration of science 

communities in hydrology, hydraulics, geographic information science (GIScience), and 

meteorology. Computation cuts across all these disciplinaries and plays a central role that not 

only provides significant computing power on national cyberinfrastructure resources for the 

computation of NFIE experiments, but also develops an integrated solution that addresses the 

data, software, computation, visualization, and community collaboration challenges. The main 

research question raised in our work is: Is it feasible to compute inundation maps for CONUS at 

1/3rd arc-second or higher resolution and automate the computation on USGS 3DEP DEM and 

NHDPlus? From a computational perspective, the following issues need to be resolved. 

● Terabytes and gigabytes of high-resolution national-scale terrain, water, and weather data 

that are distributed by multiple data sources and vary greatly in spatiotemporal scales and 
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resolutions need to be integrated, processed, and analyzed. 

● In developing the inundation mapping workflow, computational bottlenecks at the 

processing, modeling, and analysis steps of the proposed inundation mapping 

methodology need to be identified and resolved for scalable CONUS-level computation 

on advanced cyberinfrastructure. 

● The entire inundation mapping process needs to be automated such that the resulting 

software can be used to produce near real-time inundation maps from continuous NWM 

forecasting.  

● High-performance and scalable computation is important to produce the output within a 

reasonable turnaround time of, say, a few hours, to match the working pace of the 

iterative research collaborations and the pace of NWS forecast data publishing. Taking 

weeks would seriously hinder the team progress. For achieving near real-time flood 

forecast, taking more than one day to compute the inundation map would be impractical. 

The current NWM, which runs in production on NOAA’s Luna and Surge 

supercomputers (Top500 supercomputer ranking. Accessed March 10, 2017, 

https://www.top500.org/list/2016/11/?page=1), has a turnaround time of about 2 hours. 

The inundation mapping computation should not introduce additional significant delays. 

 

Given the responsiveness requirements for research collaboration and national inundation 

mapping computation, we pursue a cyberinfrastructure-based computational model to address 

these challenges with two key foci.  First, we configured an integrated computational platform on 

a hybrid supercomputing architecture that allows for the automation and integration of the 

inundation mapping workflow as an open software solution and provides a solution for 

https://www.top500.org/list/2016/11/?page=1
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collaboration, data sharing, visualization, and high-performance computing.  Second, we 

evaluated the scalability of the computational solution to both the data size and the number of 

computer processors so that the turnaround time for computation can be reduced by simply 

adding more computing power. This model achieves a modeling environment where compute, 

data storage, and network resources are integrated on demand on a centralized platform for 

building the required online geospatial and hydrologic services. This online problem-solving 

environment, in turn, serves as a community platform for broader engagement and outreach of 

continental inundation mapping research. 

The continental scale inundation mapping methodology described in the companion 

paper (Zheng et al., 2017) takes as input DEM (e.g., 1/3 arc second USGS 3DEP elevation 

DEM) and hydrography data that comprises geospatial vector data of flow lines, catchments and 

water bodies (i.e., the NHDPlus dataset). Our computational approach uses the generalized 

hydrologic terrain analysis concepts from TauDEM (Tarboton, 1997; Tarboton et al., 2008; 

2009; Tesfa et al., 2011). DEM derived streams are initiated at the sources of NHDPlus streams 

to produce a stream raster consistent with the DEM. A general method for calculating distance to 

stream in the vertical direction was used to produce HAND from this stream raster.  Three output 

datasets for inundation mapping are produced: 

1. HAND raster of the same resolution as the input DEM. The HAND value of each raster 

cell represents the height of each raster cell above the nearest stream along the flow path 

from that cell to the stream. The HAND raster represents a type of hydrologic terrain. It is 

a reference dataset for inundation mapping, that is produced once and only needs 

updating when input DEM or NHDPlus data source is updated. The size of this raster is 

the same as the input DEM. 
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2. Hydraulic property table with one record for each catchment defined in NHDPlus. This 

table is derived from the HAND raster and a defined input list of stage height values to 

compute. Each record in the table represents the hydraulic properties for a river reach in 

NHDPlus for each designated stage height. Attributes calculated from HAND for each 

reach and stage include surface area, bed area, volume, top width, wetted perimeter, cross 

sectional area, hydraulic radius, and uniform flow streamflow. This table serves as a 

lookup table to interpolate the real-time water depth given a specific river streamflow 

forecast from NOAA NWM under the assumption of uniform flow. This table is updated 

whenever HAND or NHDPlus is updated or an improved rating curve method or 

different roughness (Manning’s n) is to be applied.  

3. Inundation forecast tables and maps based on streamflow forecast data from NOAA 

NWM for each NHDPlus reach. Streamflow information is converted to water depth by 

using the hydraulic property table, which is then compared with HAND to determine 

inundation information at each river reach for all the catchment cells associated with the 

reach. 

The foremost challenge of national scale inundation mapping is rooted in the data, 

including terrain data and open water data in space and time (Maidment, 2016b). Table 1 lists the 

properties of the national-scale geospatial input datasets used for producing the aforementioned 

outputs. The geospatial data involved in this work represent typical scientific big data in volume, 

variety, and velocity. Desktop-based GIS software is ill-suited for processing such big data 

collection.  
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TABLE 1. Properties of the Input Data Sources. 

Data Source Resolution & 

Coverage 

Size Update 

Frequency 

USGS 3DEP 

Elevation Dataset 

1/3rd arc-second 

(10m); Entire U.S. 

635939 x 282122 (180b cells); 

718GB uncompressed  

Partial update 

every 3 months 

 1/9th arc-second (3m) ~10 times larger than 1/3rd arc-second  N/A 

1/27th arc-second (1m) ~100 times larger than 1/3th arc-second  N/A 

NHDPlus from 

EPA and USGS 

1:100,000; 

Entire U.S. 

~2.7 million reaches; 

12 attribute layers;18GB 

Version 2.1 

 1:24,000 

Partial U.S. 

~30 million reaches; 

~77 attribute layers in pre-release versions 

Not released yet 

NOAA NWM 

streamflow forecast 

1:100,000; 

Entire U.S. 

2.7 million reaches; ~4MB each forecast 

short range: 18 hourly forecasts  

medium range: 80 forecasts (3-hr; 10 days) 

Hourly; daily 

 

COMPUTATIONAL MODEL 

 

A high-performance and scalable cyberGIS integration and computation framework was 

built on the ROGER supercomputer to provide a holistic computational model for CFIM 

collaboration and computation. A two-level parallelization approach was developed as a scalable 

computing strategy to efficiently compute HAND and inundation information for CONUS.  
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CyberGIS Integration Model 

We exploited massive computing power enabled by advanced cyberinfrastructure (e.g., 

XSEDE) to address the integration and computational challenges presented in the NFIE CFIM 

project. Allocable resources on cyberinfrastructure include not only hardware (compute, 

memory, storage, and network) resources, but also software environment, parallel computing 

libraries, and higher-level services such as performance profiling and acceleration, community 

application development, collaborative science gateways (Lawrence et al., 2015) through user 

support programs such as XSEDE ECSS (Wilkins-Diehr et al., 2015). The cyberinfrastructure 

approach integrates a powerful computational platform via supercomputers that enables the 

development of HPC solutions for domain applications. We leverage a promising advance in 

supercomputing, hybrid supercomputing architecture (Qiu et al., 2010), to provide a highly 

integrated computational platform from application to system level for the support of large 

research computing projects such as the NFIE CFIM. A hybrid supercomputing architecture 

typically couples HPC, cloud, and data-intensive computing resources together on a single 

physical and/or virtualized supercomputer.  

In CFIM, most of the data processing and analysis employs and outputs geospatial data, 

which presents a typical case of the aforementioned integration and computation challenges that 

arise from cyberGIS problems. CyberGIS is cyberinfrastructure-enabled high-performance, 

integrated, and collaborative GIS (Wang, 2010). As a major approach in our framework, we 

employ ROGER, a dedicated cyberGIS supercomputer, as the hybrid supercomputer for CFIM 

development and operation. ROGER has three components: HPC (32 computing nodes with 12 

equipped with GPU), cloud (13 nodes), and data-intensive computing (a Hadoop cluster of 11 

nodes). The three components share 5 petabyte (PB) of usable storage via the GPFS parallel file 
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system. This architecture makes it possible to eliminate the cumbersome intermediate steps in 

data transfer and software management in the HPC-only supercomputer usage model and 

presents an online research computing environment with direct access to and processing of input 

and output data by end user. 

 

FIGURE 1. CyberGIS Integration Model. DEM, Digital Elevation Model; HAND, height above 

nearest drainage; HPC, high-performance computing; MPI, Message Passing Interface; PSE, 

problem-solving environment; TMS, Tile Map Service. 

 

Figure 1 shows the cyberGIS integration model on ROGER, which integrates data, 

software, computation, and an online problem-solving environment (PSE) on ROGER’s cloud, 

HPC, and storage systems (currently, the data-intensive computing cluster is not used) in order to 

automate or streamline the methodological components of CFIM. 
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The three major national data sources for CFIM are deployed and updated on the 5 

petabyte GPFS storage system on ROGER. DEM data is managed by a USGS 3DEP elevation 

data service - TopoLens (Hu et al., 2016) for the customization of DEM data delivery. ROGER 

HPC alone (8 terabyte memory in total), is able to provide sufficient compute, memory, storage, 

and network resources for the most demanding geospatial and hydrologic functions to be applied 

on the entire 3DEP elevation dataset. For example, the maximum memory requirement of 

TauDEM functions is four times of the input DEM, i.e., 3.2 terabyte for processing the entire 

1/3rd arc-second 3DEP DEM. 

All of the hydrologic and geospatial software needed to handle these input datasets are 

open source or free libraries. They are customized and built into the ROGER geocomputation 

software environment. These software handle raster, vector, and raster-vector processing in 

CFIM computation. Raster processing functions include clipping and hydrologic information 

extraction. Vector functions include inlet/outlet identification, flowline analysis, multi-layer 

operations such as river reach-catchment join and georeferencing with non-spatial NWM data. 

Raster-vector processing includes vectorization, rasterization, and dynamic inundation mapping 

by coupling HAND raster, catchment raster, and NWM vector data.  

An online problem-solving environment (PSE) is built on the ROGER OpenStack cloud 

to share and visualize CFIM data. A set of services is built as on-demand virtual machine images 

(VM) and container (e.g., Docker (Docker containerization. Accessed March 10, 2017, 

https://www.docker.com)) instances. As shown in Figure 1, data sharing is enabled through web-

based downloading and the underlying iRODS data federation between ROGER and 

HydroShare’s iRODS data storage at RENCI (RENCI, HydroShare project. Accessed March 10, 

2017, http://renci.org/research/hydroshare/). The iRODS data management system is used to 

https://www.docker.com/
http://renci.org/research/hydroshare/
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provide cross-domain data integration between ROGER and HydroShare in order to share 

HAND results through HydroShare data repositories. Online visualization of continental-scale 

raster results at 1/3rd arc-second resolution or finer is beyond the capabilities of a single mapping 

server. Our strategy to build the visualization tiles for multiple zoom levels, i.e., raster pyramids, 

is two-fold. First, the computation needed to generate the visualization data occurs on the same 

computing nodes that produce CFIM analysis results. Second, the need for a powerful mapping 

server to host massive visualization data is eliminated by publishing a raster layer as an OGC 

standard Tile Map Service (TMS), which only requires a web server to hold the data and 

supports the tile rendering using the straightforward [tile.x, tile.y, zoom_level] URL mapping to 

tile image file path. Visualization data is then rendered within a browser using a CyberGIS 

WebGIS module. Common geospatial datasets, such as the NHD water boundary dataset 

(WBD), are hosted on GeoServer, an open source mapping server based on Java.  

 

Scalable Computing 

Our parallel computing framework leverages two levels of parallelism to accelerate 

CFIM functions and the entire workflow. These two levels of parallelisms are exploited by two 

types of parallel computing models: high-throughput and high-performance computing, 

respectively. 

 



13 

 

FIGURE 2. Two-level parallelization based on hydrologic and spatial domain decomposition. 

Left: HUC6 map of CONUS. Right: decomposition of a single HUC6 unit. HUC, Hydrologic 

Unit Code; CONUS, conterminous U.S. 

 

The first level of parallelism, leveraging the Hydrologic Unit Code (HUC) system 

(USGS, HUC system. Accessed March 10, 2017, http://water.usgs.gov/GIS/huc.html), 

implements a divide-and-conquer strategy to provide a hydrologic and spatial data 

decomposition (Wang et al., 2009) mechanism for the parallel computing of all the HUC units 

for CONUS, as shown on the left in Figure 2. The HUC system provides a natural spatial domain 

decomposition framework to divide CONUS terrain. It provides an explicit spatial granularity 

from which we can match and allocate the runtime computing power to the computational 

requirements of each HUC unit, making the batch processing of all HUC units in CONUS 

possible. We chose HUC6 as the basic decomposition HUC level within which we consider all 

the flowlines and catchments in NHDPlus. There are 336 HUC6 units on CONUS, but the five 

Great Lakes units are not considered. The 331 units in consideration are sent to a batch job 

scheduler as independent computing tasks. 

The second level of parallelism is for the parallel computing of each individual HUC6 

http://water.usgs.gov/GIS/huc.html
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unit, shown on the right in Figure 2. Regular spatial domain decomposition (e.g., row-, column-, 

or block-wise decomposition) is applied to distribute input and output data domains to a set of 

processors. These domains form a network topology that represents their adjacency relationship. 

Ghost zones, which store the boundary data belonging to neighboring processors, are established 

for runtime data exchange via the broadly used Message Passing Interface (MPI) among 

participating processors. TauDEM, the well-known high-performance hydrologic information 

analysis software built on MPI, is employed to process individual HUC6 units. 

Our two-level parallelization strategy provides a comprehensive scalable computing 

framework that is adaptive to data coverage, resolution (e.g., finer resolution DEMs derived from 

LiDAR), and the number of allocated processors. HUC6 is chosen because TauDEM exhibits the 

best computing efficiency at this level when experiments were conducted. As TauDEM’s 

performance is accelerated, we can apply it to higher level HUC, which results in fewer 

computing jobs, but each job requires higher performance obtained by employing more 

processors for each job. Given sufficient computing power and TauDEM numerical 

performance, it is possible to compute the entire CONUS as a single computing job at 1/3rd arc-

second resolution. On the other hand, when 3-meter, 1-meter and sub-1-meter DEM become 

available for CONUS, this framework can be applied with an appropriate HUC level 

decomposition that is determined by TauDEM’s capability to handle a single DEM.  

  

HEIGHT ABOVE NEAREST DRAINAGE (HAND) COMPUTATION 

 

In this section, we describe the data and information flow in HAND computation and 

discuss insights gleaned from generating the HAND at CONUS scale. 
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FIGURE 3. HAND computational workflow for a HUC unit. HR, high resolution 

 

HAND Workflow and Computational Analysis 

Figure 3 illustrates the HAND computational workflow. HAND, by its definition, is a 

geospatial raster dataset in which the value of each cell is the height above its nearest drainage. 

To identify the nearest drainage, we construct a flow direction grid of the same resolution and 

spatial extent using the D∞ flow direction representation (Tarboton, 1997). The D∞ grid is 

derived by TauDEM from the hydrologically conditioned DEM of the studied HUC unit. The 

hydrologic conditioning consists of two steps: obstacle removal and pit removal. The obstacle 

removal function adjusts the elevation of DEM cells that are on identified river flowlines but 

blocked by topographic structures such as roads and dams. The flowlines used for obstacle 
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removal come from the high resolution NHDPlus dataset, which has more than 30 million 

reaches, in order to improve the coverage and accuracy. The methodology of obstacle removal is 

being prototyped and, thus, is currently integrated into the HAND workflow as an abstract 

interface. The pit removal function calls TauDEM’s pitremove function (Tarboton et al., 2008) 

which takes the raw DEM as input. The input DEM for the specified HUC unit is generated by 

clipping 3DEP DEM using GDAL, an open source geospatial data processing library. The 

clipping function uses the USGS NHD Water Boundary Dataset (WBD) to retrieve the boundary 

shape of a HUC unit and creates a 10-kilometer DEM clipping buffer to avoid edge effects along 

the HUC boundary. Since the 3DEP DEM is organized as a virtual raster in VRT format, there is 

no need to create a single DEM with CONUS coverage for clipping purpose.  

With the D∞ method, a flow routing network is constructed on a grid by analyzing the 

topographic data only. The next step in HAND is to compute a stream network in raster format, 

where streams are rasterized cells on a grid of the same resolution and spatial extent. The stream 

grid is also derived using the DEM model, with guidance from NHDPlus. This process includes 

a series of vector and raster processing functions. The vector processing step takes the Flowline 

layer of the medium resolution NHDPlus to identify channel heads. Each flowline feature has 

two attributes: FromNode and ToNode. Channel heads are identified if the FromNode of the 

corresponding flowline is not a ToNode (downstream) of any other flowlines. The output of this 

step is a point dataset, which is then rasterized to create a channel head weight grid. TauDEM’s 

D8 flow direction function generates a D8 flow direction grid from the same hydrologically 

conditioned DEM used in calculating the D∞ grid. The D8 grid is then used by TauDEM’s flow 

accumulation function (aread8) to generate weighted accumulated areas using the channel head 

weight grid. The threshold function in TauDEM is called with threshold value 1 to generate the 
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stream grid from the aread8 output. The result of this is a stream grid aligned with the DEM but 

initiated at the source of each NHDPlus stream. Taking the D∞ flow direction grid and the 

stream grid as input, TauDEM’s Distance to Streams function (DistanceDown) produces the 

HAND value of each cell using the vertical distance measure. We can also use the horizontal 

distance or the combination of horizontal and vertical distance in this function if these additional 

distance grids are of interest. 

We accelerate TauDEM to scale to thousands of processors and DEMs of tens of 

gigabytes through the XSEDE ECSS program. Through the work in Fan et al. (2014), Survila et 

al. (2016), and Yildirim et al. (2016), we have identified a set of computational bottlenecks of 

older TauDEM versions and improved the numerical performance and the parallel algorithms for 

the two flow direction functions in TauDEM by eliminating bottlenecks in file IO and runtime 

communication and developing more performant parallel algorithms. 

 

Computational Experience 

 

The first HAND computation was on 331 out of the 336 HUC6 accounting units. Each 

unit comprises a computing job that was submitted to ROGER HPC. Each job used 60 to 180 

processor cores based on a coarse estimation of computational intensity, described in the section, 

“Scalable Computing.” The first run was completed on April 16, 2016 and consumed a total of 

4.42 CPU years. On average, each unit used 65.6 cores and took 1.78 hours to compute. The first 

run took about 8 days to finish on the shared ROGER HPC job queue. Figure 4(a) depicts the 

computing time of all 331 jobs. The large variation shows a heterogeneous computing profile for 

the 331 HUC6 units of different sizes, topographical, and hydrologic characteristics (e.g., the 
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number of pits, flat regions and their sizes). Among the TauDEM functions called in the 

workflow, the two flow direction algorithms (D8 and D∞) took, on average, 72.65% of the 

workflow computing time. The first run was conducted as a stress test to calibrate a more 

accurate computational intensity estimation for the units.  Using the computation profile obtained 

from the first run, the workflow was adjusted for better configuration of edge contamination, 

DEM buffer size, and inlet identification from rivers passing through a watershed unit. This 

information also helped us capture CPU and memory requirements. 

 

FIGURE 4. Computing time distribution: comparison between the first (a) and second (b) run. 

 

Following the first run, the second run was completed on May 29, 2016, using the 

calibrated workflow and newly accelerated D8 and D∞ algorithms (Survila et al., 2016). Figure 

4(b) depicts the computing time for all of the 331 units. The second run finished in 36 hours and 

consumed 1.34 CPU years in total. On average, each job used 65.26 cores and took 0.54 hours to 

compute. The two-flow direction algorithms took only 12.65% of the workflow computing time, 

on average. The majority, 70.57% time, was spent on GDAL commands for pre- and post-

processing. The total input and output of HAND for CONUS takes about 5 terabyte disk space. 
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The main source of acceleration in TauDEM’s flow direction algorithms (Tarboton, 

1997) is illustrated in Figures 5 and 6. A computational strategy was applied to allow multiple 

processors to efficiently compute the flats resolving function, the most expensive function in the 

two flow direction algorithms. A flat is a set of contiguous cells on DEM with same elevation or 

zero slope value. Determining the flow direction on flat cells requires an iterative algorithm that 

is computationally costly. Figure 5 shows the distribution of 16,560,871 flats on a hydro-

conditioned DEM of a HUC6 unit. The original TauDEM uses an implicit communication 

mechanism to exchange ghost zone data on the boundary of the decomposed data domains in 

each MPI process. This mechanism has the benefit of hiding the inter-process communication 

complexity with automatic ghost zone data exchange after each iteration of the flats resolving 

function. However, this mechanism introduces significant communication cost as more 

processors are used to analyze larger DEM, as demonstrated by the performance difference 

between the first and second HAND run. A strategy to reduce the communication cost by 

locating and localizing flats resolving was developed to process local flats that are fully 

contained in spatial domains on a MPI process without any communication. Flats whose 

boundary shape cross multiple processes are shared flats and processed via MPI communication 

functions. The identification of local and shared flats was efficiently implemented with O(n) 

computing complexity.  
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FIGURE 5. Illustration of the map of flats for HUC6 unit 120901, Middle Colorado-Concho. 

Flats, denoted as dark blue parts in the figure, in hydrologically conditioned DEM may include 

natural flats, flat surfaces in DEM (such as water surface where elevation information on the 

water channel beneath the water is not available), and filled pits.  

 

With this strategy, an experiment on the D8 algorithm was conducted on 4 computing 

nodes, using 1 to 32 processors, to evaluate the performance of flats resolving, the major 

bottleneck in both D8 and D∞. TauDEM version 5.3.7, which has not yet incorporated the 

acceleration code, is used for comparison. For the parallel runs using 4, 8, 16, and 32 processors, 

respectively, 90.81%, 89.98%, 76.03%, and 66.89% local flats are identified and processed 

without inter-processor communication. The performance gain, measured as the time taken to 

finish the D8 function, is shown in Figure 6. In TauDEM version 5.3.7, the flats resolving 

function takes the majority of the computing time in all cases, although both the flow direction 

function and the flats resolving function scale well as the number of processors increases. With 

the flats resolving acceleration, this function is no longer a bottleneck. The execution time of D8 
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algorithm decreased from 3.4 hours to 6 minutes and 11 seconds on one processor and from 

1227.22 seconds to 77 seconds on 32 processors. Using 32 processors, the flats resolving 

function requires only 2.36 seconds, compared to 1152.72 seconds on TauDEM version 5.3.7. In 

the accelerated version, the slightly worse performance of the D8 function using 32 processors, 

compared to using 16 processors, indicates that the parallel IO cost outweighed the benefits from 

employing more than 16 processors on the 2.18GB DEM. 

 

 

FIGURE 6. Performance of the D8 flow direction algorithm before and after the acceleration on 

flats resolving. HUC6 unit: 120901. DEM size: 42877 x 21711, 2.18GB. For visual purpose, the 

range on Y-axis is plotted based on actual maximal values obtained in the two tests, respectively. 

 

Results  

 

Figure 7 shows the HAND map for CONUS, generated from the second run. Each 

HAND raster of an HUC unit is published as an OGC TMS map layer. A CONUS layer is 

created by merging all 331 HUC6 unit layers. The availability of this HAND dataset piqued our 

interest in evaluating the results and identifying methodological improvements, which is 
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elaborated in our companion paper (Zheng et al., 2017). The hydrologic and hydraulic 

comparison of HAND and other flood inundation mapping approaches can be found in 

Maidment et al. (2016c) and our companion paper Zheng et al. (2017). 

 

FIGURE 7. Hydrologic terrain of CONUS using the 1/3rd arc-second HAND with U.S. 5km 

boundary, created on 5/19/2016. Projection: Web Mercator (EPSG:3857). Coloring denotes 

HAND value in meters. 

 

HYDRAULIC PROPERTY TABLE AND INUNDATION MAPPING 

 

Figure 8 shows the computation workflow of inundation mapping at CONUS scale. It has 

three major components. First, the hydraulic property table is calculated by a series of raster and 

vector computing that takes the HAND data, a pre-defined stage height list, and NHDPlus as 

input. This computation is decomposed at the HUC6 level into 331 computing jobs. The output 

tables for each unit are then merged as the CONUS-level table. Second, an inundation forecast 



23 

table is computed for each NWM forecast time and stored as either CSV or NetCDF4 files. This 

table is computed at CONUS scale directly since it does not introduce significant computing 

cost. Third, the inundation mapping visualization process is invoked at the HUC6 level to 

generate map layers for each forecast table. A CONUS view of the inundation map is generated 

by merging HUC6-level map tiles.  

 

FIGURE 8. Preliminary inundation mapping workflow in continental flood inundation 

mapping (CFIM). MR, medium resolution. 

 

Computing the Hydraulic Property Table 

 

A list of hydraulic properties described in section “Data and Computational Challenges” 
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can be computed for each catchment along with corresponding stage height from HAND and 

NHDPlus. In the current configuration, the stage height table includes 82 heights, increasing 

above zero at one-foot interval. The number of records in the hydraulic property table is thus 

(number_of_river_reaches x number_of_stages). 

A number of auxiliary attributes needed for the computation of these properties, such as 

catchment ID, river segment slope, and length, are available in the NHDPlus file geodatabase. In 

order to carry the catchment ID (COMID) information embedded in the vector format of 

NHDPlus into the raster computing of HAND, a catchment grid of the same spatial extent, 

projection, and resolution as HAND is generated first. Catchment polygons in an HUC6 unit is 

retrieved from the Catchment layer in NHDPlus and then rasterized. A high-performance raster 

processing function, CatchHydroGeo, is developed using the TauDEM parallel computing 

framework to derive hydraulic properties from HAND, the catchment grid, the stage height table, 

and the slope grid (one output of the TauDEM D∞ flow direction function), as shown in Figure 

8. In this computational process, the query for the catchment polygon of COMIDs on the   

Flowline and Catchment layer, which have 2,691,344 and 2,647,454 records, respectively, is 

optimized to take only (n x log(2,691,344)) lookup operations to finish. As a result, computing 

the hydraulic property table for CONUS took about 2.5 hours on ROGER. The scientific 

evaluation of the computed river geometry and rating curve is done in Maidment et al. (2016c). 

Computing for Real-time Inundation Forecast 

 

The availability of the hydraulic property table allows straightforward translation of 

water depth information from NOAA NWM streamflow forecast information. The NWM 

streamflow forecast of a river reach (station) is linearly interpolated to the water depth by 
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looking up the hydraulic property table, which has the (water depth : streamflow) mapping for 

each stage height defined by the stage height table. In addition, other inundation criteria specific 

to certain communities, e.g., anomaly map for emergency management, can be incorporated in 

this process. The computation of the inundation forecast table queries two relational tables, i.e., 

the hydraulic property table and the NWM forecast, and does not involve geospatial processing. 

The inundation forecast table can be used by hydrologists and others who understand the 

NHDPlus and NWM. For users who need to make decisions based on inundation mapping 

visualization, near real-time inundation mapping visualization is needed. This can be done in two 

ways: static or dynamic mapping. We experimented a static mapping solution, shown in Figure 

8. First, an inundation map raster is generated by comparing the HAND value of a grid cell and 

the forecast water depth, using the catchment grid in order to identify the relevant cell.  If a cell’s 

forecast water depth is larger than the HAND value, it is marked as inundated. A masking option 

is available to show or hide cells covered by the masking layer. For example, all of the water 

body areas are masked because the CFIM model is not suitable for inundation analysis on water 

body objects. The inundation map is generated at the HUC6 level so that all the units can be 

computed in parallel. Second, the visualization function takes the GeoTIFF file of a unit’s 

inundation map and a coloring scheme and generates a tile pyramid that covers multiple zoom 

levels. The tiles are published as OGC TMS map layers for visualization. Aggregating HUC6-

level tiles into a single CONUS map layer is straightforward using image overlay techniques.  

We conducted a CONUS scale experiment on the entire inundation forecast process on 

15 computing nodes of ROGER HPC. In the experiment, the short-range NWM forecast at 

forecast initialization time 12:00:00am, March 23, 2017 UTC was used. Table 2 shows the time 

distribution of each step. The first three steps needed to generate the inundation forecast maps 
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took 44 minutes 31 seconds on 15 computing nodes, which means using 15 or more computing 

nodes to generate inundation maps is sufficient to match the hourly pace of the short-range 

NWM forecast data streaming. The TMS-based visualization computation, however, required 

almost 12 hours to generate the CONUS view because of large amount of IO cost on tile 

creation.  

TABLE 2. Execution time of the inundation map generation process, in seconds. 

 NWM Download Forecast Table Forecast Map HUC6 TMS CONUS TMS 

Time 49 603 1779 27,845 13,892 

Data 

size 

780MB unzipped 

(52MB x 15 

forecasts) 

889MB 

(60MB x 15 

forecasts) 

223GB  

(4901 maps for 

331 HUC6 units) 

45GB 

(4,140,833 tiles; 

8 zoom levels) 

35GB 

(2,405,624 tiles; 

8 zoom levels) 

 

The drawback of the static mapping approach in the TMS visualization step can be 

resolved through a dynamic mapping process which queries HAND and a few auxiliary rasters, 

the hydraulic property table, and the inundation forecast table directly, and renders the 

inundation map on the fly. The dynamic mapping process is still being developed using Esri’s 

mosaic dataset and raster function techniques.  Upon completion, the inundation mapping step 

can be completed in 11 minutes because no inundation raster maps or visualization tiles are 

needed. 
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DISCUSSION AND CONCLUSION 

 

The HAND workflow is scalable to higher resolution DEM and NHDPlus. A preliminary 

scalability study using LiDAR-derived 3m DEM and NHDPlus HR is conducted at each step of 

the HAND workflow, shown in Figure 9. Four scenarios by combining two resolutions of DEM 

(i.e., 3m and 10m) with two resolutions of NHDPlus (i.e., MR and HR) are studied, shown as the 

columns in Figure 9. Results show that DEM resolution is the main determinant to the execution 

time of HAND, shown by the 3m columns (5.4GB, 80160 x 48058 cells) and the 10m columns 

(595MB, 26730 x 16025 cells). The most expensive functions in 3m DEM computation are the 

sequential DEM clipping and post-processing (i.e., removing the 10-kilometer buffer when 

creating HAND) by GDAL. In contrast, TauDEM performance scales well in proportion to DEM 

size. The major impact of using NHDPlus high-resolution dataset is on the performance of 

flowline retrieval because the join function operates on 30 million vectors, instead of 2.7 million 

in the medium resolution dataset. 

While this paper focuses on the computational aspects of CFIM evaluation, a 

comprehensive scientific evaluation of HAND, river geometry, and inundation mapping results 

has been conducted at the 2016 Summer Institute of the Consortium of Universities for the 

Advancement of Hydrologic Science, Inc. and the National Water Center (Maidment et al., 

2016c). Assumptions made for the CFIM methodology can be found in our companion paper 

(Zheng et al., 2017). 

We successfully demonstrated the computational feasibility of continental-scale flood 

inundation mapping with the cyberGIS framework. The computation of HAND for the relevant 

331 HUC6 units on CONUS achieved a turnaround time of 1.5 days on the ROGER 
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supercomputer.  An additional 2.5 hours was taken to compute the hydraulic property table and 

store it in NetCDF4 format. The inundation forecast process took 45 minutes for producing 15 

hourly inundation tables and maps (excluding the TMS tile pyramiding step) on a short-range 

NOAA NWM forecast initialization time stamp for CONUS coverage.   

 

FIGURE 9. HAND scalability to 3DEP DEM and NHDPlus resolution. Study watershed: HUC6 

unit 120402, Galveston Bay-Sabine Lake.  DEM resolutions: 1/9th arc-second (3 m) and 1/3rd 

arc-second (10 m). NHDPlus resolutions: 1:100,000 (mr) and 1:24,000 (hr). Six computing 

nodes (120 processors) on Resourcing Open Geospatial Education and Research were used in 

each case. WBD, water boundary dataset. 

 

All of the CFIM data and visualization layers are published online (NFIE CFIM data 

repository. Accessed January 01, 2018, https://web.corral.tacc.utexas.edu/nfiedata/HAND/) to 

engage further community evaluation. The availability of HAND at 1/3rd arc-second resolution 

https://web.corral.tacc.utexas.edu/nfiedata/HAND/
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and CONUS scale has auspicious, broad, and significant research implications, enabling 

pertinent research communities to conduct large-scale flood inundation mapping research by 

pertinent research communities. The CFIM collaboration resulted in significant scalability and 

performance improvement of cyberGIS and TauDEM software. The CFIM computational model 

is based on open source geospatial and hydrologic software that is able to harness massive 

computing power for enabling the computation of the CFIM workflow. The computation on 

ROGER seamlessly exploits its HPC and cloud components for workflow methodology 

development and CFIM workflow computation, visualization, and validation. We will continue 

to improve the usability of the CFIM computational framework to couple related hydrologic 

modeling processes for producing flood inundation forecasts at high spatial and temporal 

resolutions. We will build an interactive methodology building and validation environment 

online using CyberGIS Jupyter (Yin et al., 2017) to further accelerate CFIM research, data and 

software integration, and computation. 

 

ACKNOWLEDGEMENTS 

 

This work is part of the ECSS project (award number ENG140009) of XSEDE that is supported 

by NSF under grant number 1053575. This research is supported in part by USGS under grant 

number G14AC00244 and NSF under grant numbers 1047916 and 1343785. The work used the 

ROGER supercomputer, which is supported by NSF under grant number: 1429699.  The authors 

acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at 

Austin for providing HPC and storage resources that have contributed to the research results 

reported within this paper. HydroShare is being developed under NSF grants ACI 1148453 and 

1148090. TauDEM was enhanced to support parallel computing and integrate with GDAL 



30 

libraries with support from the US Army Corps of Engineers contract numbers W912HZ-11-P-

0338 and W91238-15-P-0033 and XSEDE ECSS allocation EAR130008. The authors are 

grateful for the insightful discussions with Steve Kopp and Dean Djokic at Esri, and Larry 

Stanislawski at USGS. The authors would like to thank Dandong Yin at the University of Illinois 

at Urbana-Champaign for developing the HAND Jupyter notebook. 

 

LITERATURE CITED 

Bockelman, B., T. Cartwright, J. Frey, E. M Fajardo, B. Lin, M. Selmeci, T. Tannenbaum, and M. Zvada, 
2015. Commissioning the HTCondor-CE for the Open Science Grid. Journal of Physics: Conference 
Series (664). 

David, C.H., D.R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout, 2011. River Network 
Routing on the NHDPlus Dataset. Journal of Hydrometeorology 12(5):913-934. 

David, Cédric H., Zong-Liang Yang, Seungbum Hong, 2013, Regional-scale river flow modeling using 
off-the-shelf runoff products, thousands of mapped rivers and hundreds of stream flow gauges. 
Environmental Modelling & Software 42: 116-132. DOI: 10.1016/j.envsoft.2012.12.011. 

Fan, Y., Y. Liu, S. Wang, D. Tarboton, A. Yildirim, and N. Wilkins-Diehr, 2014. Accelerating TauDEM 
as a Scalable Hydrological Terrain Analysis Service on XSEDE. In: Proceedings of the 2014 Annual 
Conference on Extreme Science and Engineering Discovery Environment, Atlanta, GA, USA, July 
13-18. ACM, New York. DOI: 10.1145/2616498.2616510 

Hodges, B., 2013. Challenges in Continental River Dynamics. Environmental Modelling and Software 
50:16-20. DOI: 10.1016/j.envsoft.2013.08.010 

Horsburgh, Jeffery S., Mohamed M. Morsy, Anthony M. Castronova, Jonathan L. Goodall, Tian Gan, 
Hong Yi, Michael J. Stealey, and David G. Tarboton, 2016. HydroShare: Sharing Diverse 
Environmental Data Types and Models as Social Objects with Application to the Hydrology 
Domain. Journal of the American Water Resources Association (JAWRA) 52(4):873–889. DOI: 
10.1111/1752-1688.12363 

Hu, H., X. Hong, J. Terstriep, Y. Liu, M. Finn, J. Rush, J. Wendel, and S. Wang. 2016, TopoLens: 
Building A CyberGIS Community Data Service for Enhancing the Usability of High-resolution 
National Topographic Datasets. In: Proceedings of the 2016 Annual Conference on Extreme Science 
and Engineering Discovery Environment (XSEDE'16). Miami, Florida. July 17-21. ACM, New 
York, pp. 39:1--39:8. DOI: 10.1145/2949550.2949652 

Lawrence, Katherine A., Michael Zentner, Nancy Wilkins-Diehr, Julie A. Wernert, Marlon Pierce, Suresh 
Marru, Scott Michael, 2015. Science gateways today and tomorrow: positive perspectives of nearly 
5000 members of the research community. Concurrency and Computation: Practice and Experience 
27: 4252–4268. DOI: 10.1002/cpe.3526 

Maidment, David R., 2016a. Conceptual Framework for the National Flood Interoperability Experiment. 
Journal of the American Water Resources Association (JAWRA) 53(2): 245-257. DOI: 



31 

10.1111/1752-1688.12474 
Maidment, David R., 2016b. Open Water Data in Space and Time. Journal of the American Water 

Resources Association (JAWRA) 52(4):816–824. DOI: 10.1111/1752-1688.12436 
Maidment, David R., Adnan Rajib, Peirong Lin, Edward P. Clark, 2016c. National Water Center 

Innovators Program Summer Institute Report 2016. Consortium of Universities for the Advancement 
of Hydrologic Science, Inc. and the National Water Center. 
https://www.cuahsi.org/uploads/library/cuahsi_tr13_8.20.16.pdf 

Nobre, A. D., L. A. Cuartas, M. Hodnett, C. D. Rennó, G. Rodrigues, A. Silveira, M. Waterloo and S. 
Saleska, 2011. Height Above the Nearest Drainage – a hydrologically relevant new terrain model. 
Journal of Hydrology 404(1–2): 13-29. DOI: 10.1016/j.jhydrol.2011.03.051 

Nobre, Antonio Donato, Luz Adriana Cuartas, Marcos Rodrigo Momo, Dirceu Luís Severo, Adilson 
Pinheiro, and Carlos Afonso Nobre. 2016. HAND contour: a new proxy predictor of inundation 
extent. Hydrological Processes 30: 320–333. DOI: 10.1002/hyp.10581 

Qiu, Judy, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi, Seung-HeeBae, Hui Li, Bingjing 
Zhang, Tak-Lon Wu, Yang Ruan, Saliya Ekanayake, Adam Hughes, and Geoffrey Fox. 2010. 
Hybrid cloud and cluster computing paradigms for life science applications. BMC Bioinformatics 
11(12):S3. 

Rennó, Camilo Daleles, Antonio Donato Nobre, Luz Adriana Cuartas, João Vianei Soares, Martin G. 
Hodnett, Javier Tomasella, and Maarten J. Waterloo. 2008. HAND, a new terrain descriptor using 
SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of 
Environment 112(9) 3469-3481. DOI: 10.1016/j.rse.2008.03.018 

Rodda, Harvey J. E. 2005. The Development and Application of a Flood Risk Model for the Czech 
Republic. Natural Hazards 36(1): 207-220. DOI: 10.1007/s11069-004-4549-4 

Snow, Alan D., Scott D. Christensen, Nathan R. Swain, E. James Nelson, Daniel P. Ames, Norman L. 
Jones, Deng Ding, Nawajish S. Noman, Cedric H. David, Florian Pappenberger, and Ervin Zsoter, 
2016. A High-Resolution National-Scale Hydrologic Forecast System from a Global Ensemble Land 
Surface Model. Journal of the American Water Resources Association (JAWRA) 52(4): 950-964, 
DOI: 10.1111/1752-1688.12434 

Survila, K., A.A. Yildirim, T. Li, Y. Liu, D.G. Tarboton, and S. Wang, 2016. A Scalable High-
performance Topographic Flow Direction Algorithm for Hydrological Information Analysis. In: 
Proceedings of the 2016 Annual Conference on Extreme Science and Engineering Discovery 
Environment (XSEDE'16). Miami, Florida. July 17-21. ACM, New York, pp. 11:1--11:7. DOI: 
10.1145/2949550.2949571 

Swain, Nathan R., K. Latu, Scott D. Christensen, Norman L. Jones, E. James Nelson, Daniel P. Ames, 
Gustavious P. Williams, 2015. A Review of Open Source Software Solutions for Developing Water 
Resources Web Applications. Environmental Modeling & Software 67: 108-117. 

Swain, N. R., S. D. Christensen, A. D. Snow, H. Dolder, G. Espinoza-Dávalos, E. Goharian, N. L. Jones, 
E. J. Nelson, D. P. Ames and S. J. Burian, 2016. A new open source platform for lowering the 
barrier for environmental web app development. Environmental Modelling & Software 85: 11-26. 

Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid 
digital elevation models. Water resources research 33(2): 309-319. DOI: 10.1029/96WR03137 

Tarboton, D.G. and M.E. Baker, 2008. Towards an algebra for terrain-based flow analysis. In: 
Representing, modeling and visualizing the natural environment: innovations in GIS 12, NJ Mount, 
GL Harvey, P. Aplin and G. Priestnall (Editors). CRC Press, Florida. pp: 167-194. DOI: 



32 

10.1201/9781420055504.ch12 
Tarboton, D. G., K. A. T. Schreuders, D. W. Watson, and M. E. Baker, 2009. Generalized terrain-based 

flow analysis of digital elevation models. In: 18th World IMACS Congress and MODSIM09 
International Congress on Modelling and Simulation, July 2009. R. S. Anderssen, R. D. Braddock 
and L. T. H. Newham (Editors). Modelling and Simulation Society of Australia and New Zealand 
and International Association for Mathematics and Computers in Simulation, pp. 2000-2006. URL: 
http://www.mssanz.org.au/modsim09/F4/tarboton_F4.pdf 

Tarboton, D. G., R. Idaszak, J. S. Horsburgh, J. Heard, D. Ames, J. L. Goodall, L. Band, V. Merwade, A. 
Couch, J. Arrigo, R. Hooper, D. Valentine and D. Maidment, 2014. HydroShare: Advancing 
Collaboration through Hydrologic Data and Model Sharing. In: Proceedings of the 7th International 
Congress on Environmental Modelling and Software, San Diego, California, USA. D. P. Ames, N. 
W. T. Quinn and A. E. Rizzoli (Editors). International Environmental Modelling and Software 
Society (iEMSs), ISBN-13: 978-88-9035-744-2 

Tavakoly, Ahmad A., Alan D. Snow, Cédric H. David, Michael L. Follum, David R. Maidment, Zong-
Liang Yang, 2017. Continental Scale River Flow Modeling of the Mississippi River Basin Using 
High-Resolution NHDPlus Dataset. Journal of the American Water Resources Association 
53(2):258–279. DOI: 10.1111/1752-1688.12456 

Tesfa, Teklu K., David G. Tarboton, Daniel W. Watson, Kimberly A.T. Schreuders, Matthew E. Baker, 
and Robert M. Wallace, 2011. Extraction of hydrological proximity measures from DEMs using 
parallel processing, Environmental Modelling & Software 26(12): 1696-1709. DOI: 
10.1016/j.envsoft.2011.07.018. 

Towns, John, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Victor 
Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, and 
Nancy Wilkins-Diehr, 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science & 
Engineering 16(5): 62-74. DOI:10.1109/MCSE.2014.80 

Wang, Shaowen, and Marc P. Armstrong, 2009. A Theoretical Approach to the Use of 
Cyberinfrastructure in Geographical Analysis. International Journal of Geographical Information 
Science, 23 (2): 169-193. 

Wang, Shaowen, 2010. A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and 
Spatial Analysis. Annals of the Association of American Geographers 100(3): 535-557 

Wang, Shaowen, Luc Anselin, Budhendra Bhaduri, Christopher Crosby, Michael F. Goodchild, Yan Liu, 
and Timothy L. Nyerges, 2013. CyberGIS Software: A Synthetic Review and Integration Roadmap. 
International Journal of Geographical Information Science 27(11): 2122-2145 

Wang, Shaowen, 2017. CyberGIS. In: The International Encyclopedia of Geography, Douglas 
Richardson, Noel Castree, Michael F. Goodchild, Audrey Kobayashi, Weidong Liu, and Richard A. 
Marston (Editors). John Wiley & Sons, Ltd. DOI: 10.1002/9781118786352.wbieg0931 

Wilkins-Diehr, N., S. Sanielevici, J. Alameda, J. Cazes, L. Crosby, M. Pierce, and R. Roskies, 2015. An 
Overview of the XSEDE Extended Collaborative Support Program. In: High Performance Computer 
Applications 6th International Conference, ISUM 2015. Mexico City, Mexico, March 9-13. Gitler, 
Isidoro, Klapp, Jaime (Eds.) Springer International Publishing. ISBN-13: 978-3-319-32243-8, pp: 3-
13. DOI: 10.1007/978-3-319-32243-8 

Yildirim, A.A., D.G. Tarboton, Y. Liu, N.S. Sazib, S. Wang, 2016. Accelerating TauDEM for Extracting 
Hydrology Information from National-Scale High Resolution Topographic Dataset. In: Proceedings 
of the 2016 Annual Conference on Extreme Science and Engineering Discovery Environment 



33 

(XSEDE'16). Miami, Florida. July 17-21. ACM, New York, pp. 3:1--3:2. DOI: 
10.1145/2949550.2949582 

Yin, D., Y. Liu, A. Padmanabhan, J. Terstriep, J. Rush, S. Wang, 2017. A CyberGIS-Jupyter Framework 
for Geospatial Analytics at Scale. In: Proceedings of the 2017 Practice & Experience in Advanced 
Research Computing (PEARC'17). New Orleans, LA. July 9–13.  

Zheng, X., 2015. Hydraulic fabric: an information framework for river channel cross section data. Master 
Dissertation, University of Texas at Austin, Austin, Texas. 

Zheng, Xing, David Tarboton, David R. Maidment, Yan Y. Liu, and Paola Passalacqua, 2017. River 
Channel Geometry and Rating Curve Estimation Using Height Above the Nearest Drainage. Journal 
of the American Water Resources Association (JAWRA), Draft for review. 

 
 


	INTRODUCTION
	DATA AND COMPUTATIONAL CHALLENGES
	COMPUTATIONAL MODEL
	CyberGIS Integration Model
	FIGURE 1. CyberGIS Integration Model. DEM, Digital Elevation Model; HAND, height above nearest drainage; HPC, high-performance computing; MPI, Message Passing Interface; PSE, problem-solving environment; TMS, Tile Map Service.
	Scalable Computing
	FIGURE 2. Two-level parallelization based on hydrologic and spatial domain decomposition. Left: HUC6 map of CONUS. Right: decomposition of a single HUC6 unit. HUC, Hydrologic Unit Code; CONUS, conterminous U.S.
	HEIGHT ABOVE NEAREST DRAINAGE (HAND) COMPUTATION
	FIGURE 3. HAND computational workflow for a HUC unit. HR, high resolution
	HAND Workflow and Computational Analysis
	Computational Experience
	FIGURE 4. Computing time distribution: comparison between the first (a) and second (b) run.
	Results
	HYDRAULIC PROPERTY TABLE AND INUNDATION MAPPING
	Computing the Hydraulic Property Table
	Computing for Real-time Inundation Forecast
	TABLE 2. Execution time of the inundation map generation process, in seconds.
	DISCUSSION AND CONCLUSION
	While this paper focuses on the computational aspects of CFIM evaluation, a comprehensive scientific evaluation of HAND, river geometry, and inundation mapping results has been conducted at the 2016 Summer Institute of the Consortium of Universities f...
	ACKNOWLEDGEMENTS
	LITERATURE CITED

