875,559 research outputs found

    PERSEPSI MASYARAKAT HUTAN MANGROVE BAHOWO DI KELURAHAN TONGKAINA KECAMATAN BUNAKEN KOTA MANADO

    Get PDF
    The purpose of the study was to determine the public perception of the Bahowo mangrove forest. This research was conducted in Bahowo, Tongkaina Sub-District, Bunaken District, Manado City. The study lastedfor 3 (three) months from August to November 2018 starting from preparation to writing the final report. The selection of respondents was done purposevely.This study used primary data and secondary data. Primary data was obtained through direct interviews with 20 respondents based on a list of prepared statements. Secondary data was obtained through documentation from agencies related to this study, among others, at the Tongkaina District Office in Bunaken District, Manado City, local bookstore and the internet using a google search engine to access scientific journal articles and thesis from others universities regarding people's perceptions of mangrove forests. This research showed that the community has positve perceptions of mangrove forests. Bahowo in Tongkaina Sub-District, Bunaken Sub-District, Manado City as a whole stated that he agreed with a total score of 1,714 judgments from the statements conveyed by the community through direct interviews and by calculating the overall score to determine the community's perception of mangrove forests. The community argued that mangrove forests play a very important role for local communities such as protecting from the dangers of high waves and tsunami hazards.*eprm

    A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design

    Full text link
    [EN] Given the great impacts associated with the construction and maintenance of infrastructures in both the environmental, the economic and the social dimensions, a sustainable approach to their design appears essential to ease the fulfilment of the Sustainable Development Goals set by the United Nations. Multicriteria decision-making methods are usually applied to address the complex and often conflicting criteria that characterise sustainability. The present study aims to review the current state of the art regarding the application of such techniques in the sustainability assessment of infrastructures, analysing as well the sustainability impacts and criteria included in the assessments. The Analytic Hierarchy Process is the most frequently used weighting technique. Simple Additive Weighting has turned out to be the most applied decision-making method to assess the weighted criteria. Although a life cycle assessment approach is recurrently used to evaluate sustainability, standardised concepts, such as cost discounting, or presentation of the assumed functional unit or system boundaries, as required by ISO 14040, are still only marginally used. Additionally, a need for further research in the inclusion of fuzziness in the handling of linguistic variables is identified.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project no. BIA2017-85098-R).Navarro, IJ.; Yepes, V.; Martí, JV. (2019). A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Advances in Civil Engineering. 2019(6134803):1-16. https://doi.org/10.1155/2019/6134803S11620196134803Kyriacou, A. P., Muinelo-Gallo, L., & Roca-Sagalés, O. (2019). The efficiency of transport infrastructure investment and the role of government quality: An empirical analysis. Transport Policy, 74, 93-102. doi:10.1016/j.tranpol.2018.11.017García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007Yepes, V., Martí, J. V., García-Segura, T., & González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749. doi:10.1016/j.acme.2017.02.006Frangopol, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges1. Structure and Infrastructure Engineering, 7(6), 389-413. doi:10.1080/15732471003594427Safi, M., Sundquist, H., & Karoumi, R. (2015). Cost-Efficient Procurement of Bridge Infrastructures by Incorporating Life-Cycle Cost Analysis with Bridge Management Systems. Journal of Bridge Engineering, 20(6), 04014083. doi:10.1061/(asce)be.1943-5592.0000673Navarro, I. J., Yepes, V., Martí, J. V., & González-Vidosa, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196, 698-713. doi:10.1016/j.jclepro.2018.06.110Zhang, Y.-R., Wu, W.-J., & Wang, Y.-F. (2016). Bridge life cycle assessment with data uncertainty. The International Journal of Life Cycle Assessment, 21(4), 569-576. doi:10.1007/s11367-016-1035-7García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177Van den Heede, P., & De Belie, N. (2014). A service life based global warming potential for high-volume fly ash concrete exposed to carbonation. Construction and Building Materials, 55, 183-193. doi:10.1016/j.conbuildmat.2014.01.033Braga, A. M., Silvestre, J. D., & de Brito, J. (2017). Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. Journal of Cleaner Production, 162, 529-543. doi:10.1016/j.jclepro.2017.06.057Hossain, M. U., Poon, C. S., Dong, Y. H., Lo, I. M. C., & Cheng, J. C. P. (2017). Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. The International Journal of Life Cycle Assessment, 23(8), 1654-1674. doi:10.1007/s11367-017-1373-0Dong, Y. H., & Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. The International Journal of Life Cycle Assessment, 20(8), 1166-1180. doi:10.1007/s11367-015-0908-5Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140Montalbán-Domingo, L., García-Segura, T., Sanz, M. A., & Pellicer, E. (2018). Social sustainability criteria in public-work procurement: An international perspective. Journal of Cleaner Production, 198, 1355-1371. doi:10.1016/j.jclepro.2018.07.083Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496-513. doi:10.1016/j.jclepro.2018.03.022Reza, B., Sadiq, R., & Hewage, K. (2011). Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 25(4), 2053-2066. doi:10.1016/j.conbuildmat.2010.11.041Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882-893. doi:10.1016/j.conbuildmat.2013.09.009Mosalam, K. M., Alibrandi, U., Lee, H., & Armengou, J. (2018). Performance-based engineering and multi-criteria decision analysis for sustainable and resilient building design. Structural Safety, 74, 1-13. doi:10.1016/j.strusafe.2018.03.005Perini, K., & Rosasco, P. (2013). Cost–benefit analysis for green façades and living wall systems. Building and Environment, 70, 110-121. doi:10.1016/j.buildenv.2013.08.012Gilani, G., Blanco, A., & Fuente, A. de la. (2017). A New Sustainability Assessment Approach Based on Stakeholder’s Satisfaction for Building Façades. Energy Procedia, 115, 50-58. doi:10.1016/j.egypro.2017.05.006Moussavi Nadoushani, Z. S., Akbarnezhad, A., Ferre Jornet, J., & Xiao, J. (2017). Multi-criteria selection of façade systems based on sustainability criteria. Building and Environment, 121, 67-78. doi:10.1016/j.buildenv.2017.05.016Guzmán-Sánchez, S., Jato-Espino, D., Lombillo, I., & Diaz-Sarachaga, J. M. (2018). Assessment of the contributions of different flat roof types to achieving sustainable development. Building and Environment, 141, 182-192. doi:10.1016/j.buildenv.2018.05.063Hashemkhani Zolfani, S., Pourhossein, M., Yazdani, M., & Kazimieras Zavadskas, E. (2018). Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alexandria Engineering Journal, 57(1), 357-365. doi:10.1016/j.aej.2016.11.002Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58-68. doi:10.1016/j.buildenv.2018.04.041Kamali, M., Hewage, K., & Milani, A. S. (2018). Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Building and Environment, 138, 21-41. doi:10.1016/j.buildenv.2018.04.019Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49-58. doi:10.1016/j.buildenv.2012.01.007Akadiri, P. O., Olomolaiye, P. O., & Chinyio, E. A. (2013). Multi-criteria evaluation model for the selection of sustainable materials for building projects. Automation in Construction, 30, 113-125. doi:10.1016/j.autcon.2012.10.004Motuzienė, V., Rogoža, A., Lapinskienė, V., & Vilutienė, T. (2016). Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study. Journal of Cleaner Production, 112, 532-541. doi:10.1016/j.jclepro.2015.08.103Samani, P., Mendes, A., Leal, V., Miranda Guedes, J., & Correia, N. (2015). A sustainability assessment of advanced materials for novel housing solutions. Building and Environment, 92, 182-191. doi:10.1016/j.buildenv.2015.04.012AL-Nassar, F., Ruparathna, R., Chhipi-Shrestha, G., Haider, H., Hewage, K., & Sadiq, R. (2016). Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach. Clean Technologies and Environmental Policy, 18(8), 2579-2590. doi:10.1007/s10098-016-1168-1ALwaer, H., & Clements-Croome, D. J. (2010). Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment, 45(4), 799-807. doi:10.1016/j.buildenv.2009.08.019Yu, J. Q., Dang, B., Clements-Croome, D., & Xu, S. (2011). Sustainability Assessment Indicators and Methodology for Intelligent Buildings. Advanced Materials Research, 368-373, 3829-3832. doi:10.4028/www.scientific.net/amr.368-373.3829Drejeris, R., & Kavolynas, A. (2014). Multi-criteria Evaluation of Building Sustainability Behavior. Procedia - Social and Behavioral Sciences, 110, 502-511. doi:10.1016/j.sbspro.2013.12.894IGNATIUS, J., RAHMAN, A., YAZDANI, M., ŠAPARAUSKAS, J., & HARON, S. H. (2016). AN INTEGRATED FUZZY ANP–QFD APPROACH FOR GREEN BUILDING ASSESSMENT. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 22(4), 551-563. doi:10.3846/13923730.2015.1120772Amoozad Mahdiraji, H., Arzaghi, S., Stauskis, G., & Zavadskas, E. (2018). A Hybrid Fuzzy BWM-COPRAS Method for Analyzing Key Factors of Sustainable Architecture. Sustainability, 10(5), 1626. doi:10.3390/su10051626San-José Lombera, J.-T., & Garrucho Aprea, I. (2010). A system approach to the environmental analysis of industrial buildings. Building and Environment, 45(3), 673-683. doi:10.1016/j.buildenv.2009.08.012Cuadrado, J., Zubizarreta, M., Rojí, E., García, H., & Larrauri, M. (2015). Sustainability-Related Decision Making in Industrial Buildings: An AHP Analysis. Mathematical Problems in Engineering, 2015, 1-13. doi:10.1155/2015/157129Cuadrado, J., Zubizarreta, M., Rojí, E., Larrauri, M., & Álvarez, I. (2016). Sustainability assessment methodology for industrial buildings: three case studies. Civil Engineering and Environmental Systems, 33(2), 106-124. doi:10.1080/10286608.2016.1148143Heravi, G., Fathi, M., & Faeghi, S. (2017). Multi-criteria group decision-making method for optimal selection of sustainable industrial building options focused on petrochemical projects. Journal of Cleaner Production, 142, 2999-3013. doi:10.1016/j.jclepro.2016.10.168Formisano, A., & Mazzolani, F. M. (2015). On the selection by MCDM methods of the optimal system for seismic retrofitting and vertical addition of existing buildings. Computers & Structures, 159, 1-13. doi:10.1016/j.compstruc.2015.06.016Terracciano, G., Di Lorenzo, G., Formisano, A., & Landolfo, R. (2014). Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings. European Journal of Environmental and Civil Engineering, 19(7), 850-866. doi:10.1080/19648189.2014.974832Zavadskas, E. K., & Antucheviciene, J. (2007). Multiple criteria evaluation of rural building’s regeneration alternatives. Building and Environment, 42(1), 436-451. doi:10.1016/j.buildenv.2005.08.001Hosseini, S. M. A., de la Fuente, A., & Pons, O. (2016). Multicriteria Decision-Making Method for Sustainable Site Location of Post-Disaster Temporary Housing in Urban Areas. Journal of Construction Engineering and Management, 142(9), 04016036. doi:10.1061/(asce)co.1943-7862.0001137Malekly, H., Meysam Mousavi, S., & Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design. Expert Systems with Applications, 37(7), 4910-4920. doi:10.1016/j.eswa.2009.12.024Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032Balali, V., Mottaghi, A., Shoghli, O., & Golabchi, M. (2014). Selection of Appropriate Material, Construction Technique, and Structural System of Bridges by Use of Multicriteria Decision-Making Method. Transportation Research Record: Journal of the Transportation Research Board, 2431(1), 79-87. doi:10.3141/2431-11Jakiel, P., & Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054-4061. doi:10.1016/j.eswa.2014.12.039Yepes, V., García-Segura, T., & Moreno-Jiménez, J. M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024-1036. doi:10.1016/j.acme.2015.05.001Kripka, M., Yepes, V., & Milani, C. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability, 11(5), 1307. doi:10.3390/su11051307Wang, Y.-M., Liu, J., & Elhag, T. M. S. (2008). An integrated AHP–DEA methodology for bridge risk assessment. Computers & Industrial Engineering, 54(3), 513-525. doi:10.1016/j.cie.2007.09.002Abu Dabous, S., & Alkass, S. (2008). Decision support method for multi‐criteria selection of bridge rehabilitation strategy. Construction Management and Economics, 26(8), 883-893. doi:10.1080/01446190802071190Chen, T.-Y. (2014). The extended linear assignment method for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. Applied Mathematical Modelling, 38(7-8), 2101-2117. doi:10.1016/j.apm.2013.10.017Begić, F., & Afgan, N. H. (2007). Sustainability assessment tool for the decision making in selection of energy system—Bosnian case. Energy, 32(10), 1979-1985. doi:10.1016/j.energy.2007.02.006Cartelle Barros, J. J., Lara Coira, M., de la Cruz López, M. P., & del Caño Gochi, A. (2015). Assessing the global sustainability of different electricity generation systems. Energy, 89, 473-489. doi:10.1016/j.energy.2015.05.110Klein, S. J. W., & Whalley, S. (2015). Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis. Energy Policy, 79, 127-149. doi:10.1016/j.enpol.2015.01.007Montajabiha, M. (2015). An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. Group Decision and Negotiation, 25(2), 221-244. doi:10.1007/s10726-015-9440-zFetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17-28. doi:10.1016/j.ocecoaman.2015.02.005Medina-González, S., Espuña, A., & Puigjaner, L. (2018). An efficient uncertainty representation for the design of sustainable energy generation systems. Chemical Engineering Research and Design, 131, 144-159. doi:10.1016/j.cherd.2017.11.044Gumus, S., Kucukvar, M., & Tatari, O. (2016). Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustainable Production and Consumption, 8, 78-92. doi:10.1016/j.spc.2016.06.006FUENTE, A. de la, ARMENGOU, J., PONS, O., & AGUADO, A. (2016). Multi-criteria decision-making model for assessing the sustainability index of wind-turbine support systems: application to a new precast concrete alternative. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 23(2), 194-203. doi:10.3846/13923730.2015.1023347Afshar, A., Mariño, M. A., Saadatpour, M., & Afshar, A. (2010). Fuzzy TOPSIS Multi-Criteria Decision Analysis Applied to Karun Reservoirs System. Water Resources Management, 25(2), 545-563. doi:10.1007/s11269-010-9713-xSun, X., Ning, P., Tang, X., Yi, H., Li, K., Zhou, L., & Xu, X. (2013). Environmental Risk Assessment System for Phosphogypsum Tailing Dams. The Scientific World Journal, 2013, 1-13. doi:10.1155/2013/680798Martin, C., Ruperd, Y., & Legret, M. (2007). Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices. European Journal of Operational Research, 181(1), 338-349. doi:10.1016/j.ejor.2006.06.019Dong, X., Zeng, S., Chen, J., & Zhao, D. (2008). An integrated assessment method of urban drainage system: A case study in Shenzhen City, China. Frontiers of Environmental Science & Engineering in China, 2(2), 150-156. doi:10.1007/s11783-008-0014-zTahmasebi Birgani, Y., & Yazdandoost, F. (2018). An Integrated Framework to Evaluate Resilient-Sustainable Urban Drainage Management Plans Using a Combined-adaptive MCDM Technique. Water Resources Management, 32(8), 2817-2835. doi:10.1007/s11269-018-1960-2De la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770. doi:10.1016/j.jclepro.2015.07.002Onu, U. P., Xie, Q., & Xu, L. (2017). A Fuzzy TOPSIS model Framework for Ranking Sustainable Water Supply Alternatives. Water Resources Management, 31(9), 2579-2593. doi:10.1007/s11269-017-1636-3Chhipi-Shrestha, G., Hewage, K., & Sadiq, R. (2017). Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE. Water Environment Research, 89(3), 238-249. doi:10.2175/106143016x14798353399494Kucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. Automation in Construction, 40, 33-43. doi:10.1016/j.autcon.2013.12.009Jato-Espino, D., Rodriguez-Hernandez, J., Andrés-Valeri, V. C., & Ballester-Muñoz, F. (2014). A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Expert Systems with Applications, 41(15), 6807-6817. doi:10.1016/j.eswa.2014.05.008Torres-Machí, C., Chamorro, A., Pellicer, E., Yepes, V., & Videla, C. (2015). Sustainable Pavement Management. Transportation Research Record: Journal of the Transportation Research Board, 2523(1), 56-63. doi:10.3141/2523-07Santos, J., Bressi, S., Cerezo, V., & Lo Presti, D. (2019). SUP&R DSS: A sustainability-based decision support system for road pavements. Journal of Cleaner Production, 206, 524-540. doi:10.1016/j.jclepro.2018.08.308Oses, U., Rojí, E., Cuadrado, J., & Larrauri, M. (2018). Multiple-Criteria Decision-Making Tool for Local Governments to Evaluate the Global and Local Sustainability of Transportation Systems in Urban Areas: Case Study. Journal of Urban Planning and Development, 144(1), 04017019. doi:10.1061/(asce)up.1943-5444.0000406Asgari, N., Hassani, A., Jones, D., & Nguye, H. H. (2015). Sustainability ranking of the UK major ports: Methodology and case study. Transportation Research Part E: Logistics and Transportation Review, 78, 19-39. doi:10.1016/j.tre.2015.01.014Banias, G., Achillas, C., Vlachokostas, C., Moussiopoulos, N., & Tarsenis, S. (2010). Assessing multiple criteria for the optimal location of a construction and demolition waste management facility. Building and Environment, 45(10), 2317-2326. doi:10.1016/j.buildenv.2010.04.016Rochikashvili, M., & Bongaerts, J. C. (2016). Multi-criteria Decision-making for Sustainable Wall Paints and Coatings Using Analytic Hierarchy Process. Energy Procedia, 96, 923-933. doi:10.1016/j.egypro.2016.09.167Ugwu, O. O., & Haupt, T. C. (2007). Key performance indicators and assessment methods for infrastructure sustainability—a South African construction industry perspective. Building and Environment, 42(2), 665-680. doi:10.1016/j.buildenv.2005.10.018Reyes, J. P., San-José, J. T., Cuadrado, J., & Sancibrian, R. (2014). Health & Safety criteria for determining the sustainable value of construction projects. Safety Science, 62, 221-232. doi:10.1016/j.ssci.2013.08.023Dobrovolskienė, N., & Tamošiūnienė, R. (2015). An Index to Measure Sustainability of a Business Project in the Construction Industry: Lithuanian Case. Sustainability, 8(1), 14. doi:10.3390/su8010014Marzouk, M., & Azab, S. (2014). Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resources, Conservation and Recycling, 82, 41-49. doi:10.1016/j.resconrec.2013.10.015Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50-63. doi:10.1016/j.eiar.2018.05.003Brans, J. P., & Vincke, P. (1985). Note—A Preference Ranking Organisation Method. Management Science, 31(6), 647-656. doi:10.1287/mnsc.31.6.647Kabir, G., Sadiq, R., & Tesfamariam, S. (2013). A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 10(9), 1176-1210. doi:10.1080/15732479.2013.795978Podvezko, V. (2011). The Comparative Analysis of MCDA Methods SAW and COPRAS. Engineering Economics, 22(2). doi:10.5755/j01.ee.22.2.310Kaya, İ., Çolak, M., & Terzi, F. (2018). Use of MCDM techniques for energy policy and decision-making problems: A review. International Journal of Energy Research, 42(7), 2344-2372. doi:10.1002/er.4016Mardani, A., Jusoh, A., MD Nor, K., Khalifah, Z., Zakwan, N., & Valipo

    Application of mutual information-based sequential feature selection to ISBSG mixed data

    Full text link
    [EN] There is still little research work focused on feature selection (FS) techniques including both categorical and continuous features in Software Development Effort Estimation (SDEE) literature. This paper addresses the problem of selecting the most relevant features from ISBSG (International Software Benchmarking Standards Group) dataset to be used in SDEE. The aim is to show the usefulness of splitting the ranked list of features provided by a mutual information-based sequential FS approach in two, regarding categorical and continuous features. These lists are later recombined according to the accuracy of a case-based reasoning model. Thus, four FS algorithms are compared using a complete dataset with 621 projects and 12 features from ISBSG. On the one hand, two algorithms just consider the relevance, while the remaining two follow the criterion of maximizing relevance and also minimizing redundancy between any independent feature and the already selected features. On the other hand, the algorithms that do not discriminate between continuous and categorical features consider just one list, whereas those that differentiate them use two lists that are later combined. As a result, the algorithms that use two lists present better performance than those algorithms that use one list. Thus, it is meaningful to consider two different lists of features so that the categorical features may be selected more frequently. We also suggest promoting the usage of Application Group, Project Elapsed Time, and First Data Base System features with preference over the more frequently used Development Type, Language Type, and Development Platform.Fernández-Diego, M.; González-Ladrón-De-Guevara, F. (2018). Application of mutual information-based sequential feature selection to ISBSG mixed data. Software Quality Journal. 26(4):1299-1325. https://doi.org/10.1007/s11219-017-9391-5S12991325264Angelis, L., & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical Software Engineering, 5(1), 35–68. https://doi.org/10.1023/A:1009897800559 .Auer, M., Trendowicz, A., Graser, B., Haunschmid, E., & Biffl, S. (2006). Optimal project feature weights in analogy-based cost estimation: improvement and limitations. Software Engineering, IEEE Transactions on, 32(2), 83–92.Awada, W., Khoshgoftaar, T. M., Dittman, D., Wald, R., Napolitano, A. (2012). A review of the stability of feature selection techniques for bioinformatics data. In 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI) (pp. 356–363). Presented at the 2012 I.E. 13th International Conference on Information Reuse and Integration (IRI). https://doi.org/10.1109/IRI.2012.6303031 .Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. Neural Networks, IEEE Transactions, 5(4), 537–550.Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications, 42(22), 8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007 .Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008). Regression via classification applied on software defect estimation. Expert Systems with Applications, 34(3), 2091–2101. https://doi.org/10.1016/j.eswa.2007.02.012 .Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28.Chatzipetrou, P., Papatheocharous, E., Angelis, L., Andreou, A. S. (2012). An investigation of software effort phase distribution using compositional data analysis. In 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA) (pp. 367–375). Presented at the 2012 38th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA). https://doi.org/10.1109/SEAA.2012.50 .Chen, Z., Menzies, T., Port, D., & Boehm, B. (2005). Feature subset selection can improve software cost estimation accuracy. In Proceedings of the 2005 workshop on predictor models in software engineering (pp. 1–6). New York: ACM. https://doi.org/10.1145/1082983.1083171 .Chiu, N.-H., & Huang, S.-J. (2007). The adjusted analogy-based software effort estimation based on similarity distances. Journal of Systems and Software, 80(4), 628–640.Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1), 155–176.Dejaeger, K., Verbeke, W., Martens, D., & Baesens, B. (2012). Data mining techniques for software effort estimation: a comparative study. Software Engineering, IEEE Transactions on, 38(2), 375–397. https://doi.org/10.1109/TSE.2011.55 .Deng, K., & MacDonell, S. G. (2008). Maximising data retention from the ISBSG repository. In Proceedings of the 12th international conference on evaluation and assessment in software engineering (pp. 21–30). Swinton: British Computer Society http://dl.acm.org/citation.cfm?id=2227115.2227118 . Accessed 21 Jan 2014.Doquire, G., & Verleysen, M. (2011). An hybrid approach to feature selection for mixed categorical and continuous data. In International Conference on Knowledge Discovery and Information Retrieval. http://hdl.handle.net/2078.1/90765 . Accessed 2 Nov 2015.Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics, SMC, 6(4), 325–327. https://doi.org/10.1109/TSMC.1976.5408784 .Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature selection. IEEE Transactions on Neural Networks, 20(2), 189–201. https://doi.org/10.1109/TNN.2008.2005601 .Fayyad, U.M., & Irani, K.B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In Proceedings of the International Joint Conference on Uncertainty in AI (pp. 1022–1027). Presented at the International Joint Conference on Uncertainty in AI. https://www.researchgate.net/publication/220815890_Multi-Interval_Discretization_of_Continuous-Valued_Attributes_for_Classification_Learning . Accessed 22 June 2016.Fernández-Diego, M., & González-Ladrón-de-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: a mapping review. Information and Software Technology, 56(6), 527–544. https://doi.org/10.1016/j.infsof.2014.01.003 .Ferreira, A., & Figueiredo, M. (2011). Unsupervised joint feature discretization and selection. In J. Vitrià, J. M. Sanches, & M. Hernández (Eds.), Pattern recognition and image analysis (Vol. 6669, pp. 200–207). Berlin, Heidelberg: Springer Berlin Heidelberg http://link.springer.com/10.1007/978-3-642-21257-4_25 . Accessed 4 Mar 2016.Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5, 1531–1555.González-Ladrón-de-Guevara, F., Fernández-Diego, M., & Lokan, C. (2016). The usage of ISBSG data fields in software effort estimation: a systematic mapping study. Journal of Systems and Software, 113, 188–215. https://doi.org/10.1016/j.jss.2015.11.040 .Gupta, P., Jain, S., & Jain, A. (2014). A review of fast clustering-based feature subset selection algorithm. International Journal of Scientific & Technology Research, 3(11), 86–91.Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine Learning Research, 3, 1157–1182.Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering, 15(6), 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283 .Hausser, J., & Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Journal of Machine Learning Research, 10(Jul), 1469–1484.Hill, P. (2010). Practical software project estimation: a toolkit for estimating software development effort & duration. McGraw Hill Professional.Hsu, H.-H., Hsieh, C.-W., & Lu, M.-D. (2011). Hybrid feature selection by combining filters and wrappers. Expert Systems with Applications, 38(7), 8144–8150.Huang, S.-J., & Chiu, N.-H. (2006). Optimization of analogy weights by genetic algorithm for software effort estimation. Information and Software Technology, 48(11), 1034–1045. https://doi.org/10.1016/j.infsof.2005.12.020 .Huang, S.-J., Chiu, N.-H., & Liu, Y.-J. (2008). A comparative evaluation on the accuracies of software effort estimates from clustered data. Information and Software Technology, 50(9–10), 879–888. https://doi.org/10.1016/j.infsof.2008.02.005 .Huang, J., Li, Y.-F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine learning-based software cost estimation. Information and Software Technology, 67, 108–127. https://doi.org/10.1016/j.infsof.2015.07.004 .ISBSG. (2013a). ISBSG Dataset Release 12. ISBSG. http://isbsg.org/ . Accessed 1 Mar 2016.ISBSG. (2013b). ISBSG Guidelines Release 12.ISBSG. (2013c). ISBSG Data Demographics Release 12.Jeffery, R., Ruhe, M., Wieczorek, I. (2001). Using public domain metrics to estimate software development effort. In Software Metrics Symposium, 2001. METRICS 2001. Proceedings. Seventh International (pp. 16–27). https://doi.org/10.1109/METRIC.2001.915512 .Jiang, Z., & Comstock, C. (2007). The factors significant to software development productivity. In C. Ardil (Ed.), Proceedings of World Academy of Science, Engineering and Technology, Vol 19 (Vol. 19, pp. 160–164). Presented at the Conference of the World-Academy-of-Science-Engineering-and-Technology, Bangkok: World Acad Sci, Eng & Tech-Waset.Jørgensen, M., Indahl, U., & Sjøberg, D. (2003). Software effort estimation by analogy and ‘regression toward the mean’. Journal of Systems and Software, 68(3), 253–262. https://doi.org/10.1016/S0164-1212(03)00066-9 .Kabir, M. M., Shahjahan, M., & Murase, K. (2011). A new local search based hybrid genetic algorithm for feature selection. Neurocomputing, 74(17), 2914–2928.Kadoda, G., Cartwright, M., Chen, L., Shepperd, M. (2000). Experiences using case-based reasoning to predict software project effort. In EASE 2000 (pp. 2–3). Presented at the EASE 2000, Staffordshire, UK.Keung, J., Kocaguneli, E., & Menzies, T. (2012). Finding conclusion stability for selecting the best effort predictor in software effort estimation. Automated Software Engineering, 20(4), 543–567. https://doi.org/10.1007/s10515-012-0108-5 .Kirsopp, C., Shepperd, M. J., Hart, J. (2002). Search heuristics, case-based reasoning and software project effort prediction. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 9–13). New York, USA. http://v-scheiner.brunel.ac.uk/handle/2438/1554 . Accessed 27 Jan 2016.Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X .Kwak, N., & Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Transactions on Neural Networks, 13(1), 143–159. https://doi.org/10.1109/72.977291 .Langdon, W. B., Dolado, J., Sarro, F., & Harman, M. (2016). Exact mean absolute error of baseline predictor, MARP0. Information and Software Technology, 73, 16–18. https://doi.org/10.1016/j.infsof.2016.01.003 .Li, Y. F., Xie, M., & Goh, T. N. (2009). A study of mutual information based feature selection for case based reasoning in software cost estimation. Expert Systems with Applications, 36(3), 5921–5931.Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media. https://books.google.es/books?hl=en&lr=&id=aaDbBwAAQBAJ&oi=fnd&pg=PP10&dq=Feature+selection+for+knowledge+discovery+and+data+mining&ots=iuMhcWZGcf&sig=KlmNEIcsBdDVs-m1HUuICfpYZiM . Accessed 25 Jan 2016.Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502. https://doi.org/10.1109/TKDE.2005.66 .Liu, H., Wei, R., & Jiang, G. (2013). A hybrid feature selection scheme for mixed attributes data. Computational and Applied Mathematics, 32(1), 145–161. https://doi.org/10.1007/s40314-013-0019-5 .Liu, Q., Wang, J., Xiao, J., Zhu, H. (2014). Mutual information based feature selection for symbolic interval data. In International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014 (pp. 62–69). Presented at the International Conference on Software Intelligence Technologies and Applications International Conference on Frontiers of Internet of Things 2014. https://doi.org/10.1049/cp.2014.1537 .Lokan, C. (2005). What should you optimize when building an estimation model? In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.55 .Lokan, C., & Mendes, E. (2009a). Investigating the use of chronological split for software effort estimation. Software, IET, 3(5), 422–434. https://doi.org/10.1049/iet-sen.2008.0107 .Lokan, C., & Mendes, E. (2009b). Applying moving windows to software effort estimation. In Proceedings of the 2009 3rd international symposium on empirical software engineering and measurement (pp. 111–122). Washington, DC: IEEE Computer Society. https://doi.org/10.1109/ESEM.2009.5316019 .Lokan, C., & Mendes, E. (2012). Investigating the use of duration-based moving windows to improve software effort prediction. In Software Engineering Conference (APSEC), 2012 19th Asia-Pacific (Vol. 1, pp. 818–827). Presented at the Software Engineering Conference (APSEC), 2012 19th Asia-Pacific. https://doi.org/10.1109/APSEC.2012.74 .Lustgarten, J.L., Visweswaran, S., Grover, H., Gopalakrishnan, V. (2008). An evaluation of discretization methods for learning rules from biomedical datasets. In BIOCOMP (pp. 527–532).Mandal, M., & Mukhopadhyay, A. (2013). An improved minimum redundancy maximum relevance approach for feature selection in gene expression data. Procedia Technology, 10, 20–27. https://doi.org/10.1016/j.protcy.2013.12.332 .Mendes, E., Watson, I., Triggs, C., Mosley, N., & Counsell, S. (2003). A comparative study of cost estimation models for web hypermedia applications. Empirical Software Engineering, 8(2), 163–196.Mendes, E., Lokan, C., Harrison, R., Triggs, C. (2005). A replicated comparison of cross-company and within-company effort estimation models using the ISBSG database. In Software Metrics, 2005. 11th IEEE International Symposium (pp. 1–10). https://doi.org/10.1109/METRICS.2005.4 .Moses, J., Farrow, M., Parrington, N., & Smith, P. (2006). A productivity benchmarking case study using Bayesian credible intervals. Software Quality Journal, 14(1), 37–52. https://doi.org/10.1007/s11219-006-6000-4 .Núñez, H., Sànchez-Marrè, M., Cortés, U., Comas, J., Martínez, M., Rodríguez-Roda, I., & Poch, M. (2004). A comparative study on the use of similarity measures in case-based reasoning to improve the classification of environmental system situations. Environmental Modelling & Software, 19(9), 809–819. https://doi.org/10.1016/j.envsoft.2003.03.003 .Oh, I.-S., Lee, J.-S., & Moon, B.-R. (2004). Hybrid genetic algorithms for feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(11), 1424–1437.Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226–1238. https://doi.org/10.1109/TPAMI.2005.159 .R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing https://www.R-project.org/ .Romanski, P., & Kotthoff, L. (2014). FSelector: Selecting attributes. R package version 0.20. https://CRAN.R-project.org/package=FSelector .Shannon, C. E. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Shepperd, M., & MacDonell, S. (2012). Evaluating prediction systems in software project estimation. Information and Software Technology, 54(8), 820–827.Shepperd, M., & Schofield, C. (1997). Estimating software project effort using analogies. Software Engineering, IEEE Transactions on, 23(11), 736–743.Somol, P., Pudil, P., & Kittler, J. (2004). Fast branch & bound algorithms for optimal feature selection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(7), 900–912.Song, Q., & Shepperd, M. (2007). A new imputation method for small software project data sets. Journal of Systems and Software, 80(1), 51–62.Top, O. O., Ozkan, B., Nabi, M., Demirors, O. (2011). Internal and External Software Benchmark Repository Utilization for Effort Estimation. In Software Measurement, 2011 Joint Conference of the 21st Int’l Workshop on and 6th Int’l Conference on Software Process and Product Measurement (IWSM-MENSURA) (pp. 302–307). https://doi.org/10.1109/IWSM-MENSURA.2011.41 .Vinh, L.T., Thang, N.D., Lee, Y.-K. (2010). An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT) (pp. 395–398). Presented at the 2010 10th IEEE/IPSJ International Symposium on Applications and the Internet (SAINT). https://doi.org/10.1109/SAINT.2010.50 .Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. (2011). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann

    The effect of divergent selection for intramuscular fat on the domestic rabbit genome

    Full text link
    [EN] An experiment of divergent selection for intramuscular fat was carried out at Universitat Politecnica de Valencia. The high response of selection in intramuscular fat content, after nine generations of selection, and a multidimensional scaling analysis showed a high degree of genomic differentiation between the two divergent populations. Therefore, local genomic differences could link genomic regions, encompassing selective sweeps, to the trait used as selection criterion. In this sense, the aim of this study was to identify genomic regions related to intramuscular fat through three methods for detection of selection signatures and to generate a list of candidate genes. The methods implemented in this study were Wright's fixation index, cross population composite likelihood ratio and cross population - extended haplotype homozygosity. Genomic data came from the 9th generation of the two populations divergently selected, 237 from Low line and 240 from High line. A high single nucleotide polymorphism (SNP) density array, Affymetrix Axiom OrcunSNP Array (around 200k SNPs), was used for genotyping samples. Several genomic regions distributed along rabbit chromosomes (OCU) were identified as signatures of selection (SNPs having a value above cut-off of 1%) within each method. In contrast, 8 genomic regions, harbouring 80 SNPs (OCU1, OCU3, OCU6, OCU7, OCU16 and OCU17), were identified by at least 2 methods and none by the 3 methods. In general, our results suggest that intramuscular fat selection influenced multiple genomic regions which can be a consequence of either only selection effect or the combined effect of selection and genetic drift. In addition, 73 genes were retrieved from the 8 selection signatures. After functional and enrichment analyses, the main genes into the selection signatures linked to energy, fatty acids, carbohydrates and lipid metabolic processes wereACER2, PLIN2, DENND4C, RPS6, RRAGA(OCU1),ST8SIA6, VIM(OCU16),RORA, GANCandPLA2G4B(OCU17). This genomic scan is the first study using rabbits from a divergent selection experiment. Our results pointed out a large polygenic component of the intramuscular fat content. Besides, promising positional candidate genes would be analysed in further studies in order to bear out their contributions to this trait and their feasible implications for rabbit breeding programmes.The authors thank Federico Pardo, Veronica Juste and Marina Morini for technical assistance. The work was funded by project AGL2014-55921-C2-1-P and AGL2017-86083-C2-P1 from National Programme for Fostering Excellence in Scientific and Technical Research - Project I+D. B. Samuel Sosa-Madrid was supported by a FPI grant from the Economy Ministry of Spain (BES-2015-074194).Sosa-Madrid, BS.; Varona, L.; Blasco Mateu, A.; Hernández, P.; Casto-Rebollo, C.; Ibáñez-Escriche, N. (2020). The effect of divergent selection for intramuscular fat on the domestic rabbit genome. Animal. 14(11):2225-2235. https://doi.org/10.1017/S1751731120001263S222522351411Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9Carneiro, M., Albert, F. W., Afonso, S., Pereira, R. J., Burbano, H., Campos, R., … Ferrand, N. (2014). The Genomic Architecture of Population Divergence between Subspecies of the European Rabbit. PLoS Genetics, 10(8), e1003519. doi:10.1371/journal.pgen.1003519Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Barrio AM, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K and Andersson L 2014b. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079.Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39Chen, H., Patterson, N., & Reich, D. (2010). Population differentiation as a test for selective sweeps. Genome Research, 20(3), 393-402. doi:10.1101/gr.100545.109Damon, M., Wyszynska-Koko, J., Vincent, A., Hérault, F., & Lebret, B. (2012). Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure. PLoS ONE, 7(3), e33763. doi:10.1371/journal.pone.0033763Gandolfi, G., Mazzoni, M., Zambonelli, P., Lalatta-Costerbosa, G., Tronca, A., Russo, V., & Davoli, R. (2011). Perilipin 1 and perilipin 2 protein localization and gene expression study in skeletal muscles of European cross-breed pigs with different intramuscular fat contents. Meat Science, 88(4), 631-637. doi:10.1016/j.meatsci.2011.02.020Gol, S., Ros-Freixedes, R., Zambonelli, P., Tor, M., Pena, R. N., Braglia, S., … Davoli, R. (2015). Relationship between perilipin genes polymorphisms and growth, carcass and meat quality traits in pigs. Journal of Animal Breeding and Genetics, 133(1), 24-30. doi:10.1111/jbg.12159González-Rodríguez, A., Munilla, S., Mouresan, E. F., Cañas-Álvarez, J. J., Díaz, C., Piedrafita, J., … Varona, L. (2016). On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0258-1Grams, V., Wellmann, R., Preuß, S., Grashorn, M. A., Kjaer, J. B., Bessei, W., & Bennewitz, J. (2015). Genetic parameters and signatures of selection in two divergent laying hen lines selected for feather pecking behaviour. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0154-0Gurgul, A., Jasielczuk, I., Ropka-Molik, K., Semik-Gurgul, E., Pawlina-Tyszko, K., Szmatoła, T., … Krupiński, J. (2018). A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland. BMC Genetics, 19(1). doi:10.1186/s12863-018-0681-0Johansson, A. M., Pettersson, M. E., Siegel, P. B., & Carlborg, Ö. (2010). Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genetics, 6(11), e1001188. doi:10.1371/journal.pgen.1001188Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377Li, X., Lee, C.-K., Choi, B.-H., Kim, T.-H., Kim, J.-J., & Kim, K.-S. (2010). Quantitative gene expression analysis on chromosome 6 between Korean native pigs and Yorkshire breeds for fat deposition. Genes & Genomics, 32(4), 385-393. doi:10.1007/s13258-010-0009-6Lillie, M., Sheng, Z., Honaker, C. F., Dorshorst, B. J., Ashwell, C. M., Siegel, P. B., & Carlborg, Ö. (2017). Genome-wide standing variation facilitates long-term response to bidirectional selection for antibody response in chickens. BMC Genomics, 18(1). doi:10.1186/s12864-016-3414-7Ma, H., Zhang, S., Zhang, K., Zhan, H., Peng, X., Xie, S., … Ma, Y. (2019). Identifying Selection Signatures for Backfat Thickness in Yorkshire Pigs Highlights New Regions Affecting Fat Metabolism. Genes, 10(4), 254. doi:10.3390/genes10040254Mallick, S., Gnerre, S., Muller, P., & Reich, D. (2009). The difficulty of avoiding false positives in genome scans for natural selection. Genome Research, 19(5), 922-933. doi:10.1101/gr.086512.108Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590Mauch E, Servin B, Gilbert H and Dekkers J 2018. Signatures of selection in two independent populations of pigs divergently selected for feed efficiency. Animal Industry Report AS 664, ASL R3274.Oleksyk, T. K., Smith, M. W., & O’Brien, S. J. (2010). Genome-wide scans for footprints of natural selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 185-205. doi:10.1098/rstb.2009.0219Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795Qanbari, S., & Simianer, H. (2014). Mapping signatures of positive selection in the genome of livestock. Livestock Science, 166, 133-143. doi:10.1016/j.livsci.2014.05.003Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., … Lander, E. S. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. doi:10.1038/nature06250Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi:10.1186/1471-2164-15-478Sosa-Madrid BS, Hernández P, Blasco A, Haley CS, Fontanesi L, Santacreu MA, Pena RN, Navarro P and Ibáñez-Escriche N 2020. Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics 51, 58–69.Sosa-Madrid BS, Ibañez-Escriche N, Santacreu MA, Varona L and Blasco A 2017. Huellas de selección en un experimento de seleccion divergente para capacidad uterina en conejo. In Proceedings of the XVII Jornadas sobre Producción Animal, 30–31 May 2017, Zaragoza, Spain, pp. 558–560.Szpiech ZA and Hernandez RD 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31, 2824–2827.Utsunomiya, Y. T., Pérez O’Brien, A. M., Sonstegard, T. S., Van Tassell, C. P., do Carmo, A. S., Mészáros, G., … Garcia, J. F. (2013). Detecting Loci under Recent Positive Selection in Dairy and Beef Cattle by Combining Different Genome-Wide Scan Methods. PLoS ONE, 8(5), e64280. doi:10.1371/journal.pone.0064280Walter, M., Chen, F. W., Tamari, F., Wang, R., & Ioannou, Y. A. (2009). Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biology of the Cell, 101(3), 141-153. doi:10.1042/bc20070171Wang, Z., Ma, H., Xu, L., Zhu, B., Liu, Y., Bordbar, F., … Li, J. (2019). Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array. Animals, 9(6), 296. doi:10.3390/ani9060296Wipperman, M. F., Montrose, D. C., Gotto, A. M., & Hajjar, D. P. (2019). Mammalian Target of Rapamycin. The American Journal of Pathology, 189(3), 492-501. doi:10.1016/j.ajpath.2018.11.013Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-636

    Genetic diversity and production potential of animal food resources

    Get PDF
    Article Details: Received: 2020-05-21 | Accepted: 2020-06-02 | Available online: 2020-06-30https://doi.org/10.15414/afz.2020.23.02.102-108The submission aims to present results of the five-year research project, oriented on the evaluation of genetic diversity of selected populations of economically important animal species in Slovakia, their sustainable adaptation and production potential in the context of preservation of genetic resources and food safety. Under the supervision of Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources of the Slovak University of Agriculture in Nitra run between 2015- 2019 project called Molecular-genetic diversity and production potential of animal genetic resources in Slovakia (APVV-14-0054). Considering the difficulty and complexity of studied issues was research realized in close collaboration with the University of Natural Resources and Life Sciences Vienna (BOKU) and Zagreb University. Erosion of genetic diversity represents the main threat for food safety of mankind. Individuals of economically important animal species groups accumulate risks and threats of loss of sustainable adaptation as a reaction to the environment due to intense selective breeding. It is therefore important and needed to focus on permanent monitoring and evaluation of diversity of economically important breeds based on the diverse parameter and suitable methods.Keywords: Genetic diversity, economically important breeds, Animal genetic resources, SlovakiaReferencesKADLEČÍK, O., HAZUCHOVÁ, E., MORAVČÍKOVÁ, N. and KUKUČKOVÁ, V. (2017b). Genetic diversity in Slovak spotted breed. AGROFOR, 2(3), 124–131.KADLEČÍK, O., HAZUCHOVÁ, E., PAVLÍK, I. and KASARDA, R. (2016). Genetická diverzita slovenského strakatého a holštajnského dobytka (1. vyd). Nitra: Slovenská poľnohospodárska univerzita.KADLEČÍK, O., MORAVČÍKOVÁ, N. and KASARDA, R. (2017a). Biodiverzita populácií zvierat. Nitra: Slovenská poľnohospodárska univerzita.KASARDA, R., KADLEČÍK, O. and MORAVČÍKOVÁ, N. (2019b). Genetická diverzita slovenského pinzgauského plemena (1. vyd). Nitra: Slovenská poľnohospodárska univerzita.KASARDA, R., KADLEČÍK, O., TRAKOVICKÁ, A. and MORAVČÍKOVÁ, N. (2019c). Genomic and pedigree-based inbreeding in Slovak Spotted cattle. AGROFOR, 4(1), 102–110.KASARDA, R., MORAVČÍKOVÁ, N. and KADLEČÍK, O. (2016d). Spatial structure of the Lipizzan horse gene pool based on microsatellite variations analysis. AGROFOR, 1(2), 125–132.KASARDA, R., MORAVČÍKOVÁ, N. and KADLEČÍK, O. (2018d). Genetic structure of warmblood horses on molecular-genetic level. Agriculture and Forestry, 64(1), 7–13.KASARDA, R., MORAVČÍKOVÁ, N. and POKORÁDI, J. (2016a). Manažment farmového chovu a biodiverzita jeleňa lesného na Slovensku. Nitra: Slovenská poľnohospodárska univerzita.KASARDA, R., MORAVČÍKOVÁ, N. and VLČEK, M. (2018b). Genetic parameters of claw traits and milk yield in Slovak Holstein cattle. V Genetic days 2018 (s. 24). České Budějovice: University of South Bohemia.KASARDA, R., MORAVČÍKOVÁ, N., CANDRÁK, J., MÉSZÁROS, G., VLČEK, M., KUKUČKOVÁ, V. and KADLEČÍK, O. (2017b). Genome-wide mixed model association study in population of Slovak Pinzgau cattle. Agriculturae conspectus scientificus, 82(3), 267–271.KASARDA, R., MORAVČÍKOVÁ, N., HALO, M., HORNÝ, M., LEHOCKÁ, K., OLŠANSKÁ, B., BUJKO, J. and CANDRÁK, J. (2019e). Trend vývoja genomického inbrídingu v populácii plemena lipican. V Aktuálne smerovanie v chove koní (1. s. 32– 36). Nitra: Slovenská poľnohospodárska univerzita.KASARDA, R., MORAVČÍKOVÁ, N., KADLEČÍK, O., TRAKOVICKÁ, A. and CANDRÁK, J. (2018a). The impact of artificial selection on runs of homozygosity in Slovak Spotted and Pinzgau cattle. Slovak journal of animal science, 51(3), 91–103.KASARDA, R., MORAVČÍKOVÁ, N., KADLEČÍK, O., TRAKOVICKÁ, A., HALO, M. and CANDRÁK, J. (2019a). Level of inbreeding in Norik of muran horse: Pedigree vs. Genomic data. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6), 1457–1463.KASARDA, R., MORAVČÍKOVÁ, N., KADLEČÍK, O., TRAKOVICKÁ, A., ŽITNÝ, J., TERPAJ, V.P., MINDEKOVÁ, S. and NEUPANE MLYNEKOVÁ, L. (2019d). Common origin of local cattle breeds in western region of Carpathians. Danubian Animal Genetic Resource, 4, 37–42.KASARDA, R., MORAVČÍKOVÁ, N., KUKUČKOVÁ, V., KADLEČÍK, O., TRAKOVICKÁ, A. and MÉSZÁROS, G. (2016c). Evidence of selective sweeps through haplotype structure of Pinzgau cattle. Acta agriculturae Slovenica, 107(5), 160–164.KASARDA, R., MORAVČÍKOVÁ, N., KUKUČKOVÁ, V., TRAKOVICKÁ, A. and KADLEČÍK, O. (2016b). Progress in methodology of genetic diversity monitoring in pinzgau cattle. Slovak journal of animal science, 49(4), 176.KASARDA, R., MORAVČÍKOVÁ, N., KUKUČKOVÁ, V., TRAKOVICKÁ, A. and KADLEČÍK, O. (2017a). Characterization of Slovak dual-purpose cattle breed diversity based on genomic data. Slovak journal of animal science, 50(4), 165.KASARDA, R., MORAVČÍKOVÁ, N., TRAKOVICKÁ, A., MÉSZÁROS, G. and KADLEČÍK, O. (2015). Genome-wide selection signatures in Pinzgau cattle. Potravinárstvo, 9(1), 268–274.KASARDA, R., MORAVČÍKOVÁ, N., VOSTRÁ, L., KRUPOVÁ, Z., KRUPA, E., LEHOCKÁ, K., OLŠANSKÁ, B., TRAKOVICKÁ, A., NÁDASKÝ, R., ŽIDEK, R., BELEJ, Ľ., GOLIAN, J. and POLÁK, P. (2020). Fine-scale analysis of six beef cattle breeds revealed patterns of their genomic diversity. Italian Journal of Animal Science, in review.KASARDA, R., VLČEK, M., CANDRÁK, J. and MORAVČÍKOVÁ, N. (2018c). Estimation of heritability for claw traits in Holstein cattle using Bayesian and REML approaches. Journal of Central European Agriculture, 19(4), 784–790.KUKUČKOVÁ, V., KASARDA, R. and MORAVČÍKOVÁ, N. (2017a). Genomic characterisation of Slovak pinzgau cattle (1st ed). Praha: Wolters Kluwer.KUKUČKOVÁ, V., KASARDA, R., MORAVČÍKOVÁ, N., TRAKOVICKÁ, A., CURIK, I. and FERENČAKOVIC, M. (2016a). Extent of genome-wide linkage disequilibrium in Pinzgau cattle. Journal of Central European Agriculture, 17(1), 294–302.KUKUČKOVÁ, V., KASARDA, R., ŽITNÝ, J. and MORAVČÍKOVÁ, N. (2018a). Genetic markers and biostatistical methods as  appropriate tools to preserve genetic resources. AGROFOR, 3(2), 41–48.KUKUČKOVÁ, V., MORAVČÍKOVÁ, N. and KASARDA, R. (2016c). Genomic determination of the most important father lines of Slovak Pinzgau cows. AGROFOR, 1(3), 110–118.KUKUČKOVÁ, V., MORAVČÍKOVÁ, N., CURIK, I., SIMČIČ, M., MÉSZÁROS, G. and KASARDA, R. (2018b). Genetic diversity of local cattle. Acta Biochimica Polonica, 65(3), 421–424.KUKUČKOVÁ, V., MORAVČÍKOVÁ, N., FERENČAKOVIĆ, M., SIMČIČ, M., MÉSZÁROS, G., SÖLKNER, J., TRAKOVICKÁ, A., KADLEČÍK, O., CURIK, I. and KASARDA, R. (2017b). Genomic characterization of Pinzgau cattle: genetic conservation and breeding perspectives. Conservation Genetics, 18(4), 893–910.KUKUČKOVÁ, V., MORAVČÍKOVÁ, N., TRAKOVICKÁ, A., KADLEČÍK, O. and KASARDA, R. (2016b). Genetic differentiation of Slovak Pinzgau, Simmental, Charolais and Holstein cattle based on the linkage disequilibrium, persistence of phase and effective population size. Acta agriculturae Slovenica, 107(Suppl. 5), 37–40.LEHOCKÁ, K., KASARDA, R., OLŠANSKÁ, B., TRAKOVICKÁ, A., KADLEČÍK, O. and MORAVČÍKOVÁ, N. (2019b). Different ways to compute genomic inbreeding. V Scientific conference of PhD. students of FAFR and FBFS with international participation (1., s. 18). Nitra: Slovak University of Agriculture.LEHOCKÁ, K., KASARDA, R., TRAKOVICKÁ, A., KADLEČÍK, O. and MORAVČÍKOVÁ, N. (2019a). Genomic diversity and level of admixture in the Slovak Spotted cattle. V AgroSym 2019, 1607– 1612. Bosna: University of East Sarajevo.LEHOCKÁ, K., OLŠANSKÁ, B., KASARDA, R., KADLEČÍK, O., TRAKOVICKÁ, A. and MORAVČÍKOVÁ, N. (2020). The genetic structure of slovak spotted cattle based on genomewide analysis. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(1), 57–61.MILUCHOVÁ, M., GÁBOR, M., CANDRÁK, J., TRAKOVICKÁ, A. and CANDRÁKOVÁ, K. (2018). Association of HindIIIpolymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Acta Biochimica Polonica, 65(3), 403–407.MILUCHOVÁ, M., GÁBOR, M., TRAKOVICKÁ, A. and CANDRÁKOVÁ, E. (2018). Polymorphism and genetic structure CSNSI gene in Lacaune sheep population. V Genetic days 2018 (s. 59). České Budějovice: University of South Bohemia.MORAVČÍKOVÁ, N., CANDRÁK, J., KADLEČÍK, O., TRAKOVICKÁ, A. and KASARDA, R. (2018e). Genome-Wide Association Study for milk production traits in Slovak spotted cattle. V Genetic days 2018 (s. 21). České Budějovice: University of South Bohemia.MORAVČÍKOVÁ, N., KADLEČÍK, O., TRAKOVICKÁ, A. and KASARDA, R. (2018d). Autozygosity island resulting from artificial selection in Slovak spotted cattle. Agriculture and Forestry, 64(1), 21–28.MORAVČÍKOVÁ, N., KASARDA, R. and KADLEČÍK, O. (2017a). Genetic improvement of cattle through low density SNP panels. V AgroSym 2017 (s. 2212–2219). Sarajevo: Univerzitet u Sarajev.MORAVČÍKOVÁ, N., KASARDA, R. and KADLEČÍK, O. (2017b). The degree of genetic admixture within species from genus cervus. Agriculture and Forestry, 63(1), 137–143.MORAVČÍKOVÁ, N., KASARDA, R., HALO, M., LEHOCKÁ, K., OLŠANSKÁ, B. and CANDRÁK, J. (2019a). Vplyv selekcie na genóm slovenského teplokrvníka. V Aktuálne smerovanie v  chove koní (1., s. 48–52). Nitra: Slovenská poľnohospodárska univerzita.MORAVČÍKOVÁ, N., KASARDA, R., KUKUČKOVÁ, V. and KADLEČÍK, O. (2017d). Effective population size and genomic inbreeding in Slovak Pinzgau cattle. Agriculturae conspectus scientificus, 82(2), 97–100.MORAVČÍKOVÁ, N., KASARDA, R., KUKUČKOVÁ, V., VOSTRÝ, L. and KADLEČÍK, O. (2016). Genetic diversity of old Kladruber and Nonius horse populations through microsatellite variation analysis. Acta agriculturae Slovenica, 107(Suppl. 5), 45–49.MORAVČÍKOVÁ, N., KASARDA, R., ŽITNÝ, J., TRAKOVICKÁ, A. and KADLEČÍK, O. (2018a). Validation of bovine 50K SNP chip transfer ability into non-model wild animals. Slovak journal of animal science, 51(4), 180.MORAVČÍKOVÁ, N., KUKUČKOVÁ, V., MÉSZÁROS, G., SÖLKNER, J., KADLEČÍK, O. and KASARDA, R. (2017c). Assessing footprints of natural selection through PCA analysis in cattle. Acta fytotechnica et zootechnica, 20(2), 23–27.MORAVČÍKOVÁ, N., SIMČIČ, M., MESZÁROŠ, G., SÖLKNER, J., KUKUČKOVÁ, V., VLČEK, M., TRAKOVICKÁ, A., KADLEČÍK, O. and KASARDA, R. (2018c). Genomic response to natural selection within alpine cattle breeds. Czech journal of animal science, 63(4), 136–143.MORAVČÍKOVÁ, N., TRAKOVICKÁ, A., KADLEČÍK, O. and KASARDA, R. (2018b). Bioinformatics tools for analysis of livestock genetic diversity. V Preveda 2018 (s. 9). Banská Bystrica: Občianske združenie Preveda.MORAVČÍKOVÁ, N., TRAKOVICKÁ, A., KADLEČÍK, O. and KASARDA, R. (2019b). Genomic signatures of selection in cattle throught variation of allele frequencies and linkage disequilibrium. Journal of Central European Agriculture, 20(2), 576–580.MORAVČÍKOVÁ, N., ŽIDEK, R., KASARDA, R., JAKABOVÁ, D., GENČÍK, M., POKORÁDI, J., MAJKO, P. and FERIANCOVÁ, E. (2020). Identification of genetic families based on mitochondrial D-loop sequence in population of the Tatra chamois (Rupicapra rupicapra tatrica). Biologia, 75(1), 121–128.TRAKOVICKÁ, A., MORAVČÍKOVÁ, N. and KASARDA, R. (2017). Casein polymorphism in relation to the milk production traits of Slovak spotted cattle. Agriculturae conspectus scientificus, 82(3), 255–258.TRAKOVICKÁ, A., MORAVČÍKOVÁ, N., KUKUČKOVÁ, V., NÁDASKÝ, R. and KASARDA, R. (2016). The associations of lepr and H-FABP gene polymorphisms with carcass traits in pigs. Acta agriculturae Slovenica, 107(Suppl. 5), 189–194.TRAKOVICKÁ, A., MORAVČÍKOVÁ, N., NÁDASKÝ, R. and KASARDA, R. (2018a). Polymorphisms in candidate genes for beef quality in Pinzgau cattle. AGROFOR, 3(1), 5–10.TRAKOVICKÁ, A., MORAVČÍKOVÁ, N., NAVRÁTILOVÁ, A. and KASARDA, R. (2016). Carcass and meat quality in relation to the polymorphism in porcine MYF4 gene. Agriculture and Forestry, 62(4), 95–100.TRAKOVICKÁ, A., MORAVČÍKOVÁ, N., VAVRIŠÍNOVÁ, K., MILUCHOVÁ, M., GÁBOR, M. and KASARDA, R. (2018b). Effect of Calpastatin gene polymorphism on meat quality in cattle. V  Genetic days 2018 (s. 69). České Budějovice: University of South BohemiaTRAKOVICKÁ, A., VAVRIŠÍNOVÁ, K., GÁBOR, M., MILUCHOVÁ, M., KASARDA, R. and MORAVČÍKOVÁ, N. (2019). The impact of diacylglycerol O-acyltransferase 1 gene polymorphism on carcass traits in cattle. Journal of Central European Agriculture, 20(1), 12–18.TRAKOVICKÁ, A., VAVRIŠÍNOVÁ, K., MORAVČÍKOVÁ, N., MILUCHOVÁ, M., GÁBOR, M. and KASARDA, R. (2018c). The impact of polymorphism in thyroglobulin gene on beef quality. V AgroSym 2018, 1797–1801. Bosna University of East Sarajevo 2018: Bosna University of East Sarajevo.VLČEK, M. and KASARDA, R. (2017a). Genetic parameters of claw conformation in Slovak Holstein cows. V AgroSym 2017, 2208–2211. Sarajevo: Univerzitet u Sarajev.VLČEK, M. and KASARDA, R. (2017b). Metabolic status related to claw disorders. Acta fytotechnica et zootechnica, 20(1), 6–9.VLČEK, M., CANDRÁK, J. and KASARDA, R. (2016a). Fat-toprotein ratio: evaluation of metabolic disorders and milk yield. Acta agriculturae Slovenica, 107(Suppl. 5), 76–79.VLČEK, M., TOMKA, J. and KASARDA, R. (2017c). Evaluation of claw conformation by using two methods of measuring-by ruler and image analysis. Agriculturae conspectus scientificus, 82(2), 193–196.VLČEK, M., ŽITNÝ, J. and KASARDA, R. (2016b). Changes of fat-to-protein ratio from start to the mid-lactation and the impact on milk yield. Journal of Central European Agriculture, 17(4), 1194–1203.VOSTRÁ VYDROVÁ, H., VOSTRÝ, L., HOFMANOVÁ, B., MORAVČÍKOVÁ, N., VESELÁ, Z., VRTKOVÁ, I., NOVOTNÁ, A. and KASARDA, R. (2018). Genetic diversity and admixture in three native draught horse breeds assessed using microsatellite markers. Czech journal of animal science, 63(3), 85–93

    Estimation of population differentiation using pedigree and molecular data in Black Slavonian pig

    Get PDF
    Submitted 2020-07-17 | Accepted 2020-08-24 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.241-249The aim of the study was to investigate the genetic differentiation of the Black Slavonian pig population. Two parallel analyses were performed using genealogical records and molecular data. Pedigree information of 6,099 pigs of the Black Slavonian breed was used to evaluate genetic variability and population structure. Additionally, 70 pigs were genotyped using 23 microsatellite markers. Genealogical data showed shrinkage in genetic diversity parameters with effective population size of 23.58 and inbreeding of 3.26%. Expected and observed heterozygosity were 0.685 and 0.625, respectively, and the average number of alleles per locus was 7.826. Bayesian clustering algorithm method and obtained dendrograms based on pedigree information and molecular data revealed the existence of four genetic clusters within the Black Slavonian pig. Wright’s FIS, FST and FIT from pedigree records were 0.017, 0.006, and 0.024, respectively, and did not prove significant population differentiation based on the geographical location of herds, despite the natural mating system. Obtained results indicate that despite the increased number of animals in the population, genetic diversity of Black Slavonian pig is low and conservation programme should focus on strategies aimed at avoiding further loss of genetic variability. Simultaneous use of genealogical and molecular data can be useful in conservation management of Black Slavonian pig breed.Keywords: autochthonous pig breed, microsatellite, genealogical data, genetic structuringReferencesBarros, E. A., Brasil, L. H. de A., Tejero, J. P., Delgado-Bermejo, J. V. & Ribeiro, M. N. (2017). Population structure and genetic variability of the Segureña sheep breed through pedigree analysis and inbreeding effects on growth traits. Small Ruminant Research, 149, 128-133.Belkhir, K. (2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. http://www. genetix. univ-montp2. fr/genetix/genetix. htm.Boichard, D., Maignel, L. & Verrier, E. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genetics Selection Evolution, 29, 5.Caballero, A. & Toro, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetics Research, 75, 331-343.Casellas, J., Ibanez-escriche, N., Varona, L., Rosas, J. P. & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties. Journal of Animal Science, 97(5), 1979–1986.Cortés, O., Martinez, A. M., Cañon, J., Sevane, N., Gama, L. T., Ginja, C., Landi, V., Zaragoza, P., Carolino, N., Vicente, A., Sponenberg, P. & Delgado, J. V. for the BioPig Consortium. (2016). Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity, 117(1), 14-24.Commission on Genetic Resources for Food and Agriculture Food and Agriculture Organization. (2011). Molecular genetic characterization of animal genetic resources. FAO.Croatian Agency for Agriculture and Food. (2020). Annual Report 2019: Pig breeding, Osijek, Croatia.Crovetti, A., Sirtori, F., Pugliese, C., Franci, O. & Bozzi, R. (2013). Pedigree analysis of Cinta Senese and Mora Romagnola breeds. Acta Agriculturae Slovenica, Suppl. 4, 41-44.D’Alessandro, E., Giosa, D., Sapienza, I., Giuffrè, L., Cigliano, R. A., Romeo, O. & Zumbo, A. (2019). Whole genome SNPs discovery in Nero Siciliano pig. Genetics and Molecular Biology, 42(3), 594-602.Diniz-Filho, J. A. F., Melo, D. B., de Oliveira, G., Collevatti, R. G., Soares, T. N., Nabout, J. C., Lima, J., Dobrovolski, R., Chaves, L. J., Naves, R. V., Loyola, R. D. & Telles M. P. de C. (2012). Planning for optimal conservation of geographical genetic variability within species. Conservation Genetics, 13(4), 1085-1093.Druml, T., Salajpal, K., Dikic, M., Urosevic, M., Grilz-Seger, G., & Baumung, R. (2012). Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs. Genetics Selection Evolution, 44(1), 5.Earl, D. A. & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361.Evanno, S., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.FAO (2000). Secondary guidelines for development of national farm animal genetic resources management plans: Management of small populations at risk. Rome: Food and Agriculture Organization.Francis, R. M. (2017). Pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27-32.Goyache, F., Gutiérrez, J. P., Fernández, I., Gomez, E., Alvarez, I., Díez, J. & Royo, L. J. (2003). Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. Journal of Animal Breeding and Genetics, 120, 95-105.Gutiérrez, J. P. & Goyache, F. (2005). A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics, 122, 172-176.Gvozdanović, K., Margeta, V., Margeta, P., Djurkin Kušec, I., Galović, D., Dovč, P. & Kušec, G. (2019). Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism. Animal Biotechnology, 30(3), 242-251.Gvozdanović, K., Djurkin Kušec, I., Margeta, P., Salajpal, K., Džijan, S., Bošnjak, Z. & Kušec, G. (2020). Multiallelic marker system for traceability of Black Slavonian pig meat. Food Control, 109, 106917.International Society for Animal Genetics (ISAG)/Food and Agricultural Organization (FAO) (2011). Molecular genetic characterization of animal genetic resources. Rome: FAO Animal Production and Health Guidelines.Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.Jombart, T., Devillard, S. & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94.Kramarenko, S. S., Lugovoy, S. I., Kharzinova, V. R., Lykhach, V. Y., Kramarenko, A. S. & Lykhach, A. V. (2018). Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems, 9(2), 177-182.Lacy, R. C. (1987). Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158.Lemus-Flores, C., Ulloa-Arvizu, R., Ramos-Kuri, M., Estrada, F. J. & Alonso, R. A. (2001). Genetic analysis of Mexican hairless pig populations. Journal of Animal Science, 79(12), 3021-3026.Lukić, B., Smetko, A., Mahnet, Ž., Klišanić, V., Špehar, M., Raguž, N. & Kušec, G. (2015). Population genetic structure of autochthonous Black Slavonian Pig. Poljoprivreda, 21(1), 28-32.Ma, L., Ya-Jie J. & Zhang, D. X. (2015). Statistical measures of genetic differentiation of populations: Rationales, history and current states. Current Zoology, 61(5): 886–897.Margeta, P., Margeta, V. & Budimir, K. (2013). How black is really Black Slavonian pig? Acta Agriculturae Slovenica, Suppl. 4, 25-28.Margeta, P., Margeta, V., Gvozdanović, K., Galović, D., Djurkin Kušec, I. & Kušec, G. (2016). Microsatellite multiplex method for potential use in Black Slavonian pig breeding. Acta Agriculturae Slovenica, 5, 66-70.Margeta, P., Gvozdanovic, K., Djurkin Kušec, I., Radišić, Ž., Kusec, G. & Margeta, V. (2018). Genetic analysis of Croatian autochthonous pig breeds based on microsatellite markers. Archivos de Zootecnia, 1, 13-16.Mariani, E., Summer, A., Ablondi, M. & Sabbioni, A. (2020). Genetic variability and management in Nero di Parma swine breed to preserve local diversity. Animals, 10(3), 538.Meuwissen, T. H. E. & Luo, Z. (1992). Computing inbreeding coefficients in large populations. Genetics Selection Evolution, 24, 305.Muñoz, M., Bozzi, R., García-Casco, J., Núñez, Y., Ribani, A., Franci, O., García, F., Škrlep, M., Schiavo, G., Bovo, S., Utzeri, V. J., Charneca, R., Martins, J. M., Quintanilla, R., Tibau, J., Margeta, V., Djurkin-Kušec, I., Mercat, M. J., Riquet, J., Estellé, J., Zimmer, C., Razmaite, V., Araujo, J. P., Radović, Č., Savić, R., Karolyi, D., Gallo, M., Čandek-Potokar, M., Fernández, A. I., Fontanesi, L. & Óvilo, C. (2019). Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Scientific Reports, 9(1), 13546.Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323.Nei, M., Tajima, F. & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19(2), 153-170.Nei, M., (1987). Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.Pritchard, J. K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.Posta, J., Szabó, P. & Komlósi, I. (2016). Pedigree analysis of Mangalica pig breeds. Annals of Animal Science, 16(3), 701-709.R Development Core Team. (2018). A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved May 5, 2020 from http://www.R-project.org/.Sargolzaei, M., Iwaisaki, H. & Colleau, J. J. (2006). CFC: a tool for monitoring genetic diversity. Proc. 8th World Congr. Genet. Appl. Livest. Prod., CD-ROM Communication, (27-28), 13-18.Scali, M., Vignani, R., Bigliazzi, J., Paolucci, E., Bernini, A., Spiga, O., Niccolai, N. & Cresti, M. (2012). Genetic differentiation between CintaSenese and commercial pig breeds using microsatellite. Electronic Journal of Biotechnology, 15(2), 1-11.Silió, L., Barragán, C., Fernández, A.I., García‐Casco, J. & Rodríguez, M. C. (2016). Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Animal Breeding and Genetics, 133(2),145-154.Toomey, A. H., Knight, A. T. & Barlow, J. (2017). Navigating the space between research and implementation in conservation. Conservation Letters, 10(5), 619-625.Wang, J. (2014). Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods. Journal of Evolutionary Biology, 27, 518–530.Wright, S. (1931). Evolution in mendelian populations. Genetics, 16, 97-159.Wright, S. (1978). Evolution and the genetics of populations: Vol. 4. Variability within and among natural populations. University of Chicago Press: Chicago. USA.Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R. P. M. A., Zinovieva, N., Schook, L. B., Archibald, A., Gatphayak, K., Knorr, C., Triantafyllidis, A., Alexandri, P., Semiadi, G., Hanotte, O., Dias, D., Dovč, P., Uimari, P., Iacolina, L., Scandura, M., Groenen, M. A. M., Huang, L. & Megens, H.-J. (2017). Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 49(1), 71.Zhang, J., Jiao, T. & Zhao, S. (2016). Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations. Biochemical and Biophysical Research Communications, 473(4), 814-820.

    Probabilistic reframing for cost-sensitive regression

    Full text link
    © ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Knowledge Discovery from Data (TKDD), VOL. 8, ISS. 4, (October 2014) http://doi.acm.org/10.1145/2641758Common-day applications of predictive models usually involve the full use of the available contextual information. When the operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new cost context, are possible solutions here. An alternative approach, which has not been studied in a comprehensive way for regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach, where decisions are made according to the estimated output and a reliability, confidence, or probability estimation. In this article, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability density. Given the conditional mean produced by any regression technique, we develop lightweight “enrichment” methods that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We apply these methods to some very common families of costsensitive problems, such as optimal predictions in (auction) bids, asymmetric loss scenarios, and rejection rules.This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, and TIN 2013-45732-C4-1-P and GVA projects PROMETEO/2008/051 and PROMETEO2011/052. Finally, part of this work was motivated by the REFRAME project (http://www.reframe-d2k.org) granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA) and funded by Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).Hernández Orallo, J. (2014). Probabilistic reframing for cost-sensitive regression. ACM Transactions on Knowledge Discovery from Data. 8(4):1-55. https://doi.org/10.1145/2641758S15584G. Bansal, A. Sinha, and H. Zhao. 2008. Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information System 25, 3 (Dec. 2008), 315--336.A. P. Basu and N. Ebrahimi. 1992. Bayesian approach to life testing and reliability estimation using asymmetric loss function. Journal of Statistical Planning and Inference 29, 1--2 (1992), 21--31.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2010. Quantification via probability estimators. In Proceedings of the 2010 IEEE International Conference on Data Mining. IEEE, 737--742.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013), 1--44.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global, 128--146.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2011. Using negotiable features for prescription problems. Computing 91, 2 (2011), 135--168.J. Bi and K. P. Bennett. 2003. Regression error characteristic curves. In Proceedings of the 20th International Conference on Machine Learning (ICML’03).Z. Bosnić and I. Kononenko. 2008. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67, 3 (2008), 504--516.Z. Bosnić and I. Kononenko. 2009. An overview of advances in reliability estimation of individual predictions in machine learning. Intelligent Data Analysis 13, 2 (2009), 385--401.L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.P. F. Christoffersen and F. X. Diebold. 1996. Further results on forecasting and model selection under asymmetric loss. Journal of Applied Econometrics 11, 5 (1996), 561--571.P. F. Christoffersen and F. X. Diebold. 1997. Optimal prediction under asymmetric loss. Econometric Theory 13 (1997), 808--817.I. Cohen and M. Goldszmidt. 2004. Properties and benefits of calibrated classifiers. Knowledge Discovery in Databases: PKDD 2004 (2004), 125--136.S. Crone. 2002. Training artificial neural networks for time series prediction using asymmetric cost functions. In Proceedings of the 9th International Conference on Neural Information Processing.J. Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7 (2006), 1--30.M. Dumas, L. Aldred, G. Governatori, and A. H. M. Ter Hofstede. 2005. Probabilistic automated bidding in multiple auctions. Electronic Commerce Research 5, 1 (2005), 25--49.C. Elkan. 2001. The foundations of cost-sensitive learning. In Proceedings of the 17th International Conference on Artificial Intelligence (’01), Bernhard Nebel (Ed.). San Francisco, CA, 973--978.G. Elliott and A. Timmermann. 2004. Optimal forecast combinations under general loss functions and forecast error distributions. Journal of Econometrics 122, 1 (2004), 47--79.T. Fawcett. 2006a. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874.T. Fawcett. 2006b. ROC graphs with instance-varying costs. Pattern Recognition Letters 27, 8 (2006), 882--891.C. Ferri, P. Flach, and J. Hernández-Orallo. 2002. Learning decision trees using the area under the ROC curve. In Proceedings of the International Conference on Machine Learning. 139--146.C. Ferri, P. Flach, and J. Hernández-Orallo. 2003. Improving the AUC of probabilistic estimation trees. In Proceedings of the 14th European Conference on Machine Learning (ECML’03). Springer, 121--132.C. Ferri and J. Hernández-Orallo. 2004. Cautious classifiers. In ROC Analysis in Artificial Intelligence, 1st International Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004, J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach (Eds.). 27--36.P. Flach. 2012. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press.G. Forman. 2008. Quantifying counts and costs via classification. Data Mining and Knowledge Discovery 17, 2 (2008), 164--206.S. García and F. Herrera. 2008. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. The Journal of Machine Learning Research 9, 2677--2694 (2008), 66.R. Ghani. 2005. Price prediction and insurance for online auctions. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’05). ACM, New York, NY, 411--418.C. W. J. Granger. 1969. Prediction with a generalized cost of error function. Operational Research (1969), 199--207.C. W. J. Granger. 1999. Outline of forecast theory using generalized cost functions. Spanish Economic Review 1, 2 (1999), 161--173.P. Hall, J. Racine, and Q. Li. 2004. Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association 99, 468 (2004), 1015--1026.P. Hall, R. C. L. Wolff, and Q. Yao. 1999. Methods for estimating a conditional distribution function. Journal of the American Statistical Association (1999), 154--163.T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.J. Hernández-Orallo. 2013. ROC curves for regression. Pattern Recognition 46, 12 (2013), 3395--3411.J. Hernández-Orallo, P. Flach, and C. Ferri. 2012. A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13 (2012), 2813--2869.J. Hernández-Orallo, P. Flach, and C. Ferri. 2013. ROC curves in cost space. Machine Learning 93, 1 (2013), 71--91.J. N. Hwang, S. R. Lay, and A. Lippman. 1994. Nonparametric multivariate density estimation: A comparative study. IEEE Transactions on Signal Processing 42, 10 (1994), 2795--2810.R. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics (1996), 315--336.N. Japkowicz and M. Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press.M. Jino, B. T. de Abreu, and others. 2010. Machine learning methods and asymmetric cost function to estimate execution effort of software testing. In Proceedings of the 2010 3rd International Conference on Software Testing, Verification and Validation (ICST’10). IEEE, 275--284.B. Kitts and B. Leblanc. 2004. Optimal bidding on keyword auctions. Electronic Markets 14, 3 (2004), 186--201.N. Lachiche and P. Flach. 2003. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In Proceedings of the International Conference on Machine Learning, Vol. 20-1. 416.H. Papadopoulos. 2008. Inductive conformal prediction: Theory and application to neural networks. Tools in Artificial Intelligence 18 (2008), 315--330.H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. 2002. Inductive confidence machines for regression. In Machine Learning: ECML 2002, Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Lecture Notes in Computer Science, Vol. 2430. Springer, Berlin, 185--194.H. Papadopoulos, V. Vovk, and A. Gammerman. 2011. Regression conformal prediction with nearest neighbours. Journal of Artificial Intelligence Research 40, 1 (2011), 815--840.T. Pietraszek. 2007. On the use of ROC analysis for the optimization of abstaining classifiers. Machine Learning 68, 2 (2007), 137--169.J. C. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, Boston, 61--74.F. Provost and P. Domingos. 2003. Tree induction for probability-based ranking. Machine Learning 52, 3 (2003), 199--215.R Team and others. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.R. Ribeiro. 2011. Utility-based Regression. PhD thesis, Department of Computer Science, Faculty of Sciences, University of Porto.M. Rosenblatt. 1969. Conditional probability density and regression estimators. Multivariate Analysis II 25 (1969), 31.S. Rosset, C. Perlich, and B. Zadrozny. 2007. Ranking-based evaluation of regression models. Knowledge and Information Systems 12, 3 (2007), 331--353.R. E. Schapire, P. Stone, D. McAllester, M. L. Littman, and J. A. Csirik. 2002. Modeling auction price uncertainty using boosting-based conditional density estimation. In Proceedings of the International Conference on Machine Learning. 546--553.G. Shafer and V. Vovk. 2008. A tutorial on conformal prediction. Journal of Machine Learning Research 9 (2008), 371--421.J. A. Swets, R. M. Dawes, and J. Monahan. 2000. Better decisions through science. Scientific American 283, 4 (Oct. 2000), 82--87.R. D. Thompson and A. P. Basu. 1996. Asymmetric loss functions for estimating system reliability. In Bayesian Analysis in Statistics and Econometrics. John Wiley & Sons, 471--482.L. Torgo. 2005. Regression error characteristic surfaces. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 697--702.L. Torgo. 2010. Data Mining with R. Chapman and Hall/CRC Press.L. Torgo and R. Ribeiro. 2007. Utility-based regression. Knowledge Discovery in Databases: PKDD 2007. 597--604.L. Torgo and R. Ribeiro. 2009. Precision and recall for regression. In Discovery Science. Springer, 332--346.P. Turney. 2000. Types of cost in inductive concept learning. Canada National Research Council Publications Archive.L. Wasserman. 2006. All of Nonparametric Statistics. Springer-Verlag, New York.M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorobeychik. 2004. Price prediction in a trading agent competition. Journal of Artificial Intelligence Research 21 (2004), 19--36.K. Yu and M. C. Jones. 2004. Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association 99, 465 (2004), 139--144.B. Zadrozny and C. Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 694--699.A. Zellner. 1986. Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association (1986), 446--451.H. Zhao, A. P. Sinha, and G. Bansal. 2011. An extended tuning method for cost-sensitive regression and forecasting. Decision Support Systems

    Emerging Search Regimes: Measuring Co-evolutions among Research, Science, and Society

    Full text link
    Scientometric data is used to investigate empirically the emergence of search regimes in Biotechnology, Genomics, and Nanotechnology. Complex regimes can emerge when three independent sources of variance interact. In our model, researchers can be considered as the nodes that carry the science system. Research is geographically situated with site-specific skills, tacit knowledge and infrastructures. Second, the emergent science level refers to the formal communication of codified knowledge published in journals. Third, the socio-economic dynamics indicate the ways in which knowledge production relates to society. Although Biotechnology, Genomics, and Nanotechnology can all be characterised by rapid growth and divergent dynamics, the regimes differ in terms of self-organization among these three sources of variance. The scope of opportunities for researchers to contribute within the constraints of the existing body of knowledge are different in each field. Furthermore, the relevance of the context of application contributes to the knowledge dynamics to various degrees

    The selection, appraisal and retention of digital scientific data: dighlights of an ERPANET/CODATA workshop

    Get PDF
    CODATA and ERPANET collaborated to convene an international archiving workshop on the selection, appraisal, and retention of digital scientific data, which was held on 15-17 December 2003 at the Biblioteca Nacional in Lisbon, Portugal. The workshop brought together more than 65 researchers, data and information managers, archivists, and librarians from 13 countries to discuss the issues involved in making critical decisions regarding the long-term preservation of the scientific record. One of the major aims for this workshop was to provide an international forum to exchange information about data archiving policies and practices across different scientific, institutional, and national contexts. Highlights from the workshop discussions are presented
    corecore