191 research outputs found

    Generic Metadata Handling in Scientific Data Life Cycles

    Get PDF
    Scientific data life cycles define how data is created, handled, accessed, and analyzed by users. Such data life cycles become increasingly sophisticated as the sciences they deal with become more and more demanding and complex with the coming advent of exascale data and computing. The overarching data life cycle management background includes multiple abstraction categories with data sources, data and metadata management, computing and workflow management, security, data sinks, and methods on how to enable utilization. Challenges in this context are manifold. One is to hide the complexity from the user and to enable seamlessness in using resources to usability and efficiency. Another one is to enable generic metadata management that is not restricted to one use case but can be adapted with limited effort to further ones. Metadata management is essential to enable scientists to save time by avoiding the need for manually keeping track of data, meaning for example by its content and location. As the number of files grows into the millions, managing data without metadata becomes increasingly difficult. Thus, the solution is to employ metadata management to enable the organization of data based on information about it. Previously, use cases tended to only support highly specific or no metadata management at all. Now, a generic metadata management concept is available that can be used to efficiently integrate metadata capabilities with use cases. The concept was implemented within the MoSGrid data life cycle that enables molecular simulations on distributed HPC-enabled data and computing infrastructures. The implementation enables easy-to-use and effective metadata management. Automated extraction, annotation, and indexing of metadata was designed, developed, integrated, and search capabilities provided via a seamless user interface. Further analysis runs can be directly started based on search results. A complete evaluation of the concept both in general and along the example implementation is presented. In conclusion, generic metadata management concept advances the state of the art in scientific date life cycle management

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    Report of the 2014 NSF Cybersecurity Summit for Large Facilities and Cyberinfrastructure

    Get PDF
    This event was supported in part by the National Science Foundation under Grant Number 1234408. Any opinions, findings, and conclusions or recommendations expressed at the event or in this report are those of the authors and do not necessarily reflect the views of the National Science Foundation

    Conceptual Framework and Methodology for Analysing Previous Molecular Docking Results

    Get PDF
    Modern drug discovery relies on in-silico computational simulations such as molecular docking. Molecular docking models biochemical interactions to predict where and how two molecules would bind. The results of large-scale molecular docking simulations can provide valuable insight into the relationship between two molecules. This is useful to a biomedical scientist before conducting in-vitro or in-vivo wet-lab experiments. Although this ˝eld has seen great advancements, feedback from biomedical scientists shows that there is a need for storage and further analysis of molecular docking results. To meet this need, biomedical scientists need to have access to computing, data, and network resources, and require speci˝c knowledge or skills they might lack. Therefore, a conceptual framework speci˝cally tailored to enable biomedical scientists to reuse molecular docking results, and a methodology which uses regular input from scientists, has been proposed. The framework is composed of 5 types of elements and 13 interfaces. The methodology is light and relies on frequent communication between biomedical sciences and computer science experts, speci˝ed by particular roles. It shows how developers can bene˝t from using the framework which allows them to determine whether a scenario ˝ts the framework, whether an already implemented element can be reused, or whether a newly proposed tool can be used as an element. Three scenarios that show the versatility of this new framework and the methodology based on it, have been identi˝ed and implemented. A methodical planning and design approach was used and it was shown that the implementations are at least as usable as existing solutions. To eliminate the need for access to expensive computing infrastructure, state-of-the-art cloud computing techniques are used. The implementations enable faster identi˝cation of new molecules for use in docking, direct querying of existing databases, and simpler learning of good molecular docking practice without the need to manually run multiple tools. Thus, the framework and methodol-ogy enable more user-friendly implementations, and less error-prone use of computational methods in drug discovery. Their use could lead to more e˙ective discovery of new drugs

    Improving the Performance of Cloud-based Scientific Services

    No full text
    Cloud computing provides access to a large scale set of readily available computing resources at the click of a button. The cloud paradigm has commoditised computing capacity and is often touted as a low-cost model for executing and scaling applications. However, there are significant technical challenges associated with selecting, acquiring, configuring, and managing cloud resources which can restrict the efficient utilisation of cloud capabilities. Scientific computing is increasingly hosted on cloud infrastructure—in which scientific capabilities are delivered to the broad scientific community via Internet-accessible services. This migration from on-premise to on-demand cloud infrastructure is motivated by the sporadic usage patterns of scientific workloads and the associated potential cost savings without the need to purchase, operate, and manage compute infrastructure—a task that few scientific users are trained to perform. However, cloud platforms are not an automatic solution. Their flexibility is derived from an enormous number of services and configuration options, which in turn result in significant complexity for the user. In fact, naïve cloud usage can result in poor performance and excessive costs, which are then directly passed on to researchers. This thesis presents methods for developing efficient cloud-based scientific services. Three real-world scientific services are analysed and a set of common requirements are derived. To address these requirements, this thesis explores automated and scalable methods for inferring network performance, considers various trade-offs (e.g., cost and performance) when provisioning instances, and profiles application performance, all in heterogeneous and dynamic cloud environments. Specifically, network tomography provides the mechanisms to infer network performance in dynamic and opaque cloud networks; cost-aware automated provisioning approaches enable services to consider, in real-time, various trade-offs such as cost, performance, and reliability; and automated application profiling allows a huge search space of applications, instance types, and configurations to be analysed to determine resource requirements and application performance. Finally, these contributions are integrated into an extensible and modular cloud provisioning and resource management service called SCRIMP. Cloud-based scientific applications and services can subscribe to SCRIMP to outsource their provisioning, usage, and management of cloud infrastructures. Collectively, the approaches presented in this thesis are shown to provide order of magnitude cost savings and significant performance improvement when employed by production scientific services

    Scientific Workflows: Past, Present and Future

    Get PDF
    International audienceThis special issue and our editorial celebrate 10 years of progress with data-intensive or scientific workflows. There have been very substantial advances in the representation of workflows and in the engineering of workflow management systems (WMS). The creation and refinement stages are now well supported, with a significant improvement in usability. Improved abstraction supports cross-fertilisation between different workflow communities and consistent interpretation as WMS evolve. Through such re-engineering the WMS deliver much improved performance, significantly increased scale and sophisticated reliability mechanisms. Further improvement is anticipated from substantial advances in optimisation. We invited papers from those who have delivered these advances and selected 14 to represent today's achievements and representative plans for future progress. This editorial introduces those contributions with an overview and categorisation of the papers. Furthermore, it elucidates responses from a survey of major workflow systems, which provides evidence of substantial progress and a structured index of related papers. We conclude with suggestions on areas where further research and development is needed and offer a vision of future research directions
    corecore