116 research outputs found

    Linear Codes associated to Determinantal Varieties

    Full text link
    We consider a class of linear codes associated to projective algebraic varieties defined by the vanishing of minors of a fixed size of a generic matrix. It is seen that the resulting code has only a small number of distinct weights. The case of varieties defined by the vanishing of 2 x 2 minors is considered in some detail. Here we obtain the complete weight distribution. Moreover, several generalized Hamming weights are determined explicitly and it is shown that the first few of them coincide with the distinct nonzero weights. One of the tools used is to determine the maximum possible number of matrices of rank 1 in a linear space of matrices of a given dimension over a finite field. In particular, we determine the structure and the maximum possible dimension of linear spaces of matrices in which every nonzero matrix has rank 1.Comment: 12 pages; to appear in Discrete Mat

    The puzzle conjecture for the cohomology of two-step flag manifolds

    Full text link
    We prove a conjecture of Knutson asserting that the Schubert structure constants of the cohomology ring of a two-step flag variety are equal to the number of puzzles with specified border labels that can be created using a list of eight puzzle pieces. As a consequence, we obtain a puzzle formula for the Gromov-Witten invariants defining the small quantum cohomology ring of a Grassmann variety of type A. The proof of the conjecture proceeds by showing that the puzzle formula defines an associative product on the cohomology ring of the two-step flag variety. It is based on an explicit bijection of gashed puzzles that is analogous to the jeu de taquin algorithm but more complicated.Comment: Final Version. 32 pages; 381 figures (best viewed in color

    Decomposable Subspaces, Linear Sections of Grassmann Varieties, and Higher Weights of Grassmann Codes

    Get PDF
    Given a homogeneous component of an exterior algebra, we characterize those subspaces in which every nonzero element is decomposable. In geometric terms, this corresponds to characterizing the projective linear subvarieties of the Grassmann variety with its Plucker embedding. When the base field is finite, we consider the more general question of determining the maximum number of points on sections of Grassmannians by linear subvarieties of a fixed (co)dimension. This corresponds to a known open problem of determining the complete weight hierarchy of linear error correcting codes associated to Grassmann varieties. We recover most of the known results as well as prove some new results. In the process we obtain, and utilize, a simple generalization of the Griesmer-Wei bound for arbitrary linear codes.Comment: 16 page

    Automorphism groups of Grassmann codes

    Full text link
    We use a theorem of Chow (1949) on line-preserving bijections of Grassmannians to determine the automorphism group of Grassmann codes. Further, we analyze the automorphisms of the big cell of a Grassmannian and then use it to settle an open question of Beelen et al. (2010) concerning the permutation automorphism groups of affine Grassmann codes. Finally, we prove an analogue of Chow's theorem for the case of Schubert divisors in Grassmannians and then use it to determine the automorphism group of linear codes associated to such Schubert divisors. In the course of this work, we also give an alternative short proof of MacWilliams theorem concerning the equivalence of linear codes and a characterization of maximal linear subspaces of Schubert divisors in Grassmannians.Comment: revised versio
    corecore