18 research outputs found

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Some notes on generic rectangulations

    Get PDF
    A rectangulation is a subdivision of a rectangle into rectangles. A generic rectangulation is a rectangulation that has no crossing segments. We explain several observations and pose some questions about generic rectangulations. In particular, we show how one may "centrally invert" a generic rectangulation about any given rectangle, analogous to reflection across a circle in classical geometry. We also explore 3-dimensional orthogonal polytopes related to "marked" rectangulations and drawings of planar maps.  These observations arise from viewing a generic rectangulation as topologically equivalent to a sphere

    Contact representations of graphs in 3D

    Full text link
    We study contact representations of non-planar graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We present a liner-time algorithm constructing a representation of a 3-connected planar graph, its dual, and the vertex-face incidence graph with 3D boxes. We then investigate contact representations of 1- planar graphs. We first prove that optimal 1-planar graphs without separating 4-cycles admit a contact representation with 3D boxes. However, since not every optimal 1-planar graph can be represented in this way, we also consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graphs with L-shapes. © Springer International Publishing Switzerland 2015

    Morphing Schnyder drawings of planar triangulations

    Full text link
    We consider the problem of morphing between two planar drawings of the same triangulated graph, maintaining straight-line planarity. A paper in SODA 2013 gave a morph that consists of O(n2)O(n^2) steps where each step is a linear morph that moves each of the nn vertices in a straight line at uniform speed. However, their method imitates edge contractions so the grid size of the intermediate drawings is not bounded and the morphs are not good for visualization purposes. Using Schnyder embeddings, we are able to morph in O(n2)O(n^2) linear morphing steps and improve the grid size to O(n)×O(n)O(n)\times O(n) for a significant class of drawings of triangulations, namely the class of weighted Schnyder drawings. The morphs are visually attractive. Our method involves implementing the basic "flip" operations of Schnyder woods as linear morphs.Comment: 23 pages, 8 figure

    A Schnyder-type drawing algorithm for 5-connected triangulations

    Full text link
    We define some Schnyder-type combinatorial structures on a class of planar triangulations of the pentagon which are closely related to 5-connected triangulations. The combinatorial structures have three incarnations defined in terms of orientations, corner-labelings, and woods respectively. The wood incarnation consists in 5 spanning trees crossing each other in an orderly fashion. Similarly as for Schnyder woods on triangulations, it induces, for each vertex, a partition of the inner triangles into face-connected regions (5~regions here). We show that the induced barycentric vertex-placement, where each vertex is at the barycenter of the 5 outer vertices with weights given by the number of faces in each region, yields a planar straight-line drawing.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    The Order Dimension of Planar Maps Revisited

    Full text link
    corecore