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SOME NOTES ON GENERIC RECTANGULATIONS

DAVID RICHTER

Abstract. A rectangulation is a subdivision of a rectangle into rectan-
gles. A generic rectangulation is a rectangulation that has no crossing
segments. We explain several observations and pose some questions
about generic rectangulations. In particular, we show how one may
“centrally invert” a generic rectangulation about any given rectangle,
analogous to reflection across a circle in classical geometry. We also
explore 3-dimensional orthogonal polytopes related to “marked” rectan-
gulations and drawings of planar maps. These observations arise from
viewing a generic rectangulation as topologically equivalent to a sphere.

1. Introduction

This article has some observations concerning subdivisions of rectangles
into rectangles, known commonly as rectangulations or floorplans, cf. [19].
Rectangulations arise naturally in architecture, VLSI design, and some top-
ics in combinatorics. The main theme in these notes is that a rectangulation
bears some similarity to a Schlegel diagram. Recall (from [21] for instance)
that a Schlegel diagram of a convex polytope is an image of a skeleton of
the polytope via stereographic projection. As we explain below, a rectangu-
lation can represent a drawing of a planar map, which we regard as a slight
generalization of a 3-dimensional convex polytope. We demonstrate a con-
struction for generic rectangulations, showing that, given a rectangulation
and one of its constituent rectangles, one may form an equivalent rectan-
gulation where the chosen rectangle serves as the bounding rectangle. We
call this transformation “central inversion,” as it is analogous to reflection
across a circle on the one-point compactification of the cartesian plane.

Another aspect of this theme might be called the Lifting Problem: If one
has something that looks like it might be a Schlegel diagram, then the fun-
damental problem is to determine whether or not it is a Schlegel diagram. In
2 dimensions there is a cluster of closely related results concerning this ques-
tion. For example, one of these results (attributed to James Clerk Maxwell)
has an intuitive physical manifestation: Suppose G is a polyhedral graph
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(meaning that it is simple, planar, and 3-connected). Moreover, suppose the
vertices of G are represented by movable points, the edges are represented
by ideal springs, and one chooses a 2-dimensional face. Then, by demand-
ing that this face fit a specified polygon, one obtains a straight-line drawing
of the rest of the graph which happens to be Schlegel diagram of a corre-
sponding 3-dimensional convex polytope. This story is well known and has
been told nicely by various authors, [20, 21]. In these notes, we address an
analogous issue with rectangulations. In our view, a rectangulation “lifts”
to an orthogonal polytope that represents the face lattice of a planar map.
The problem is to assign values to the constituent rectangles that specifies
the lift to an orthogonal polytope that is topologically “good” (contractible,
for instance).

Another theme of this project is graph drawing. In this regard, the works
[13, 14, 15] are relevant. The articles [13] and [15] concern a connection be-
tween Schnyder woods and orthogonal surfaces. Briefly, a “Schnyder wood”
is a certain kind of marking of a planar map that is related to a drawing of
the underlying graph on an orthogonal surface; such a construction is used
as part of the proof of an auxiliary result of the Brightwell-Trotter theorem
[6], which asserts that the dimension of the incidence order of a planar map
is four. The relation of this work to Schnyder woods, in particular, is subtle
(and perhaps not very important). However, explaining it will require an
understanding of zig-zag paths, which are described below and used to prove
our main result about central invertibility. The paper [14] is a comprehensive
survey on rectangulations and related orthogonal drawings of graphs.

We also mention a more algebraic perspective on rectangulations which
has been overlooked by the researchers mentioned thus far. Given a set T
with a pair π = (≺, <) of partial orders on T , the authors of [10] address the
problem of determining whether or not (T, π) corresponds to a rectangula-
tion (which they call a “tileorder”). In so doing, they relate the notion to
double categories. For another algebraic topic relating to rectangulations,
we should also mention [18], where so-called “diagonal” rectangulations ap-
pear as elements of a Hopf algebra.

2. Terminology

We assume that every rectangulation is embedded in the cartesian plane
in such a way that every edge is parallel to either the horizontal or vertical
axis. If e1 = (1, 0) and e2 = (0, 1) denote the standard basis vectors in R2,
then the cardinal directions are the vectors {±e1,±e2}, to which we may
refer using the terrestrial cardinal directions north, south, east, west.

2.1. Condensed rectangulations. We regard a rectangulation as a set
of rectangles that comprise a subdivision of its bounding rectangle. The
word “subdivision” implies that such a set is finite and the intersection
of any two of them has empty interior. For practical purposes, we may
specify a rectangulation as a list of entries of the form [a, b] × [c, d] where
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Figure 2.1. A rectangulation with a nontrivial subrectan-
gulation (shaded).

the coordinates are real numbers such that a < b and c < d for all i. A
constituent rectangle of a rectangulation is any rectangle that appears in
such a listing. A rectangulation is generic if there is no point where two
edges intersect in their relative interior.

Let R be a generic rectangulation. A supporting line of R is a line that
contains an edge of at least one constituent rectangle of R. A segment of R
is a connected component of a set which is formed as the union of all edges
that lie on a given supporting line. Call R faithful if every supporting line
contains precisely one segment; Figure 2.5 shows a rectangulation that is not
faithful. A rectangle of R is any rectangle whose edges lie on two vertical and
two horizontal segments. A vertex of R is any point that appears as a vertex
of at least one of its rectangles. A subrectangulation of R is a rectangulation
of one of its rectangles which is subdivided using constituent rectangles of
R. A rectangulation is trivial if it has only one rectangle (itself). Thus,
with this terminology, a constituent rectangle in R coincides with a trivial
subrectangulation. See Figure 2.1 for a rectangulation that has a rectangle
that is not a constituent rectangle.

A sliced box of R is a triple (r0, r1, r) of distinct rectangles of R such
that r = r0 ∪ r1. Following similar usage from [2], call R slicing if every
rectangle appears as r0, r1, or r in at least one sliced box (r0, r1, r) of R.
Call a rectangulation simple if it does not have any nontrivial subrectangu-
lations. Figure 2.2 shows a slicing rectangulation and Figure 2.1 shows a
rectangulation that is neither slicing nor simple.

Let R be a generic rectangulation. Call two rectangles r1 and r2 of R
adjacent if (∂r1) ∩ (∂r2) is nonempty. Call r1 and r2 aligned if there is a
segment that contains an edge of each of r1 and r2. Call two rectangulations
strongly equivalent (respectively, weakly equivalent) if there is a bijection
from the subrectangles of one to the subrectangles of the other that preserves
adjacency (respectively, alignment).

We also define a more global notion of equivalence. Loosely speaking, two
rectangulations are globally equivalent if one may move the supporting lines
of one to the other without two parallel supporting lines passing each other.
Here is a more precise formulation of this: Let R and R′ be rectangulations.
Assume that the lines supporting the segments of R are given by x = xi and
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Figure 2.2. A condensed slicing rectangulation.

y = yj , where i ∈ {0, 1, 2, . . . , w} and j ∈ {0, 1, 2, . . . , h} where xi < xi+1 for
all i and yj < yj+1 for all j. Likewise assume that the lines supporting the
segments of R′ are given by x = x′i and y = y′j , where i ∈ {0, 1, 2, . . . , w′}
and j ∈ {0, 1, 2, . . . , h′} where x′i < x′i+1 for all i and y′j < y′j+1 for all j.

Call R and R′ globally equivalent if w = w′, h = h′, and there are bijections
between the segments on x = xi and x = x′i and bijections between the
segments on y = yj and y = y′j that respect adjacency. With this, we accept
the following without proof:

Proposition 2.1. Suppose R and R′ are generic rectangulations. (a) If R
and R′ are globally equivalent, then they are strongly equivalent. (b) If R
and R′ are strongly equivalent, then they are weakly equivalent.

Figure 2.4 shows counterexamples to the converses of these statements.
(Another way to understand global equivalence is in terms of “contractions”
and “elongations” of rectangulations. Thus, suppose R is a rectangulation
and L is an axis-parallel line that passes through R but which does not
contain a segment of R. Then L passes through a sequence of segments
that are perpendicular to L. We obtain an elongation by lengthening these
segments while translating the segments parallel to L away from L. Con-
traction is similar, where one trims sufficiently small congruent intervals out
from these segments on pushing the parallel segments towards L. See Fig-
ure 2.3. Global equivalence is the coarsest equivalence relation subject to
requiring contracted or elongated rectangulations to be equivalent.)

Note that our notion of weak equivalence is also called “R-equivalence”
in [3] and [9], and that our notion of strong equivalence is called simply
“equivalence” in [19].

Call a rectangulation R integral if all of the vertices lie in Z2. Call R
integrally condensed or “condensed” for short if it is generic and faithful
and all of the coordinates of the vertices are nonnegative integers that are
minimal with respect to faithfulness. Thus, in a condensed rectangulation,
the vertical line x = 0 and the horizontal line y = 0 are supporting lines of
the bounding rectangle, and (0, 0) is a vertex coinciding with the southwest
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Figure 2.3. Elongation and contraction.
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Figure 2.4. Rectangulations (a) and (b) are weakly but not
strongly equivalent. Rectangulations (b) and (c) are strongly
but not globally equivalent.
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Figure 2.5. (a) Nonfaithful rectangulation. (b) Condensed
rectangulation.

corner of the bounding rectangle. Moreover, if R is condensed, then there
are integers, say w and h, such that each vertical line x = 0, 1, 2, . . . , w and
each horizontal line y = 0, 1, 2, . . . , h contains exactly one segment of R. The
following is elementary (and we accept it without proof), but it emphasizes
the significance of global equivalence:

Proposition 2.2. Suppose R is a faithful, generic rectangulation. There is
a unique condensed rectangulation that is globally equivalent to R.

For the rest of these notes, if it is not otherwise implied, the reader should
assume that every given rectangulation is condensed.
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We also notice that a rectangulation can be determined by its set of
segments. That is, if R is a condensed rectangulation and Σ is a list of
its segments, then we may recover R as a list of rectangles from Σ. This
will be important later when we discuss transformations of rectangulations
via transformations of their segments. One should consult [3] for a focused
study of rectangulations with emphasis on their segments.

2.2. Orthotopes and their faces. We do not wish to devote too much
space to the general theory of d-dimensional orthogonal polytopes, but we
should say some things about what they are and especially what we regard
as “faces” of orthogonal polytopes. (To this author’s best knowledge, such a
general theory is severely lacking in the literature at large.) For the purposes
of these notes, we say that a d-dimensional integral orthogonal polytope (or
“orthotope” for short) is any set that can be expressed as

P = S + [0, 1]d (Minkowski sum),

where S ⊂ Zd is a finite set of integer lattice points and [0, 1]d is the d-
dimensional unit cube.

Suppose P is a d-dimensional integral orthotope. Then, analogous to the
face lattice of a convex polytope, P has a face poset, which we describe as
follows. A supporting plane of P is a (d− 1)-dimensional hyperplane Π that
is parallel to one of the coordinate hyperplanes and such that the interior
of (∂P ) ∩ Π is nonempty, using the relative topology of Π ≈ Rd−1. A facet
of P is a subset of P of the form

closure(interior((∂P ) ∩Π)),

where Π is a supporting hyperplane of P , using the relative topology of Π.
We define a face of P recursively as either P itself or any object that is a
facet of a higher-dimensional face of P . (We could also define the notion of
equivalence of orthotopes, similar to global equivalence of rectangulations
above, but this is not of central interest in these notes. Again, a general
theory is lacking.)

Call a subset P ⊂ Rd orthogonally convex if P ∩ L is connected for ev-
ery line L that is parallel to a coordinate axis. Call an orthotope totally
orthogonally convex if each of its faces is orthogonally convex and totally

spherical if every face of dimension k is homeomorphic to the disc [0, 1]k for
all k. In particular, notice that every face of a totally spherical orthotope is,
at the very least, contractible. Figure 2.6 shows a connected 2-dimensional
orthotope which is not totally spherical.

2.3. Planar maps. The purpose of this section is to explain a relation be-
tween planar maps and rectangulations. The significance of this relation
emerges when we study central inversion and introduce flag orthotopes be-
low.

For our purposes, a planar map is a bridge-free, loop-free, undirected
graph (allowing multi-edges) equipped with an embedding in the plane.
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Figure 2.6. An orthogonal octagon with a nonspherical 2-face.

Thus, for a planar map, there are well-defined sets of vertices, edges, and
faces, with multi-edges distinguished by their placement in the plane. The
condition of being loop-free ensures that every edge has two distinct ver-
tices, and the condition of being bridge-free ensures that the dual map has
no loops. The dipole map is a planar drawing of the graph consisting of 2
vertices and a double edge connecting them. The theta map is the planar
map consisting of 2 vertices and a triple edge. The double-triangle is the
dual of the theta graph.

A generic rectangulation offers a way to draw a planar map. Our draw-
ings are somewhat unorthodox, however, as we represent the edges of a
map by constituent rectangles (including the bounding rectangle), vertices
by vertical lines, and 2-dimensional regions of the map by horizontal seg-
ments. This relation respects some familiar constructions in graph theory.
Figure 2.7 summarizes how to translate between various terms according to
this correspondence. For example, a slicing rectangulation corresponds to
a series-parallel graph. Similarly, by Steinitz’s theorem, a simple rectan-
gulation corresponds to a 3-dimensional convex polytope. Also notice that
dualizing a planar map corresponds to flipping the rectangulation sideways,
thereby interchanging horizontal and vertical segments. (It is also enter-
taining to notice that the rectangulations in the global-equivalence class
representing the theta map are all topologically equivalent to the letter θ!)

This relation has been known in one way or another since at least [5].
The key connection seems to come from bipolar orientations of nonseparable
maps as they relate to Baxter permutations. With our usage, a “nonsepa-
rable map” is a triple (M, e, ∗), where M is a planar map, e is an edge on
the outer face, and ∗ an orientation of e. Thus, in [2] and [19], one sees a
direct link between certain markings of rectangulations and Baxter permu-
tations. Also, in [5] one sees a representation of a Baxter permutation as a
nonseparable map. Thus, these notes “close the loop” by emphasizing the
direct link between rectangulations and planar maps. The reader should
consult the survey [14] for more connections between these ideas. Going
back a bit further, we should notice the classic article [7], where the authors
study tilings of rectangles by squares; although the authors do not explore
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Rectangulations Planar Maps
constituent rectangle edge

vertical segment vertex
horizontal segment face/region

vertex vertex-region incidence
vertical slice insert series vertex

horizontal slice insert parallel edge
slicing rectangulation series-parallel graph
simple rectangulation polyhedral map

rectangle with a horizontal slice theta map
rectangle with a vertical slice double-triangle

trivial rectangulation dipole map

Figure 2.7. Dictionary for rectangulations and planar maps.

this connection in depth, one finds an electrical network corresponding to
such a rectangulation, where squares are represented by resistors, etc.

2.4. Flag orthotopes. We would like to associate a certain orthotope with
a planar map. Ideally, such an object should faithfully display all of the
flags in its face lattice. Moreover, we would like to demand that all of the
faces should be topologically “nice,” meaning that we would hope that the
orthotope is totally spherical, and perhaps even totally orthogonally convex.

Suppose M is a planar map. Let V , E, and F be the sets of vertices,
edges, and 2-dimensional regions of M , respectively. Then the face lattice
of M is the set L(M) = {∅} ∪ V ∪E ∪ F ∪ {M}, equipped with the partial
order induced by incidence. A lattice map of M is a function

L(M)
ϕ−−→ Z

such that the restrictions of ϕ to V , E, and F are one-to-one. Neglecting
the singletons at the top and bottom, let v ⊂ e ⊂ f be a complete flag in
L(M) and suppose ϕ is a lattice map. Then (ϕ(v), ϕ(e), ϕ(f)) is a point in
R3 which we wish to regard as a vertex of the flag orthotope corresponding
to (M,ϕ).

As an example, consider Figure 2.8. This figure shows a rectangulation
which is the image of a flag orthotope of the depicted planar map under
an orthographic projection. Each of the vertices in the rectangulation thus
corresponds to an edge of the corresponding flag orthotope collapsed to a
point under projection. The figure has three sets of numbers, colored with
red, blue, and green. The blue (respectively green, red) numbers mark the
vertices (respectively edges, regions) of the planar map. If we consider these
numbers as coordinates in R3, then this orthotope is good in the sense that
every face is both orthogonally convex and homeomorphic to a disk of the
appropriate dimension. Figure 4.1 displays another example.
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Figure 2.8. Flag orthotope of a planar map.
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Figure 2.9. The theta map.

Below, using certain markings of rectangulations, we will exhibit various
functions ϕ for which the orthogonal convex hull of the vertices defined by
ϕ is totally spherical and totally orthogonally convex.

3. Central inversion

The purpose here is to study central inversions of rectangulations. In
particular, we show how to centrally invert any given rectangulation about
any given constituent rectangle. The geometric effect is to interchange the
roles of the given rectangle and the bounding rectangle while rearranging
the other rectangles in a specific way.

Suppose n is a nonnegative integer and a, b ∈ {0, 1, 2, . . . , n} satisfy a < b.
Define a permutation of the set {0, 1, 2, . . . , n} by

fn,a,b(x) =

 a− x if x ≤ a,
x if x > a and x < b,

b+ n− x if x ≥ b,

One checks that (i) fn,a,b is an involutary permutation on {0, 1, 2, . . . , n}, (ii)
fn,a,b maps the set {0, 1, 2, . . . , a} to itself, (iii) fn,a,b maps {b, b+ 1, . . . , n}
to itself, and (iv) fn,a,b fixes each point strictly between a and b.
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Figure 3.1. Central inversion.

We obtain a central inversion by applying involutions of the form fn,a,b to
both of the coordinates, thereby effecting a transformation of the constituent
rectangles. Thus, suppose R is a rectangulation that is condensed to the set
{0, 1, 2, . . . , w}×{0, 1, 2, . . . , h}, and suppose r = [a, b]×[c, d] is a constituent
rectangle. For each vertex (x, y) of R, we define

Tr(x, y) = (fw,a,b(x), fh,c,d(y)).

By definition, Tr is defined on the vertices of R. We define the effect of Tr

on rectangles by saying that if s is a rectangle of R, then the vertices of
Tr(s) consist of the points Tr(v), where v is a vertex of s. With this, we
can observe that Tr exchanges r with the bounding rectangle [0, w]× [0, h].
Figure 3.1 shows a rectangulation and the rectangulation resulting from a
central inversion.

In general, the result of applying Tr to all of the rectangles of R may
not yield a bona fide rectangulation. That is, if r1 and r2 are constituent
rectangles apart from r, then the images Tr(r1) and Tr(r2) may intersect
with a nonempty interior. If, by contrast, it happens that Tr yields another
generic rectangulation with no overlapping constituent rectangles, then we
say that Tr yields a generic rectangulation.

3.1. Universally visible rectangles. Our first result gives necessary and
sufficient conditions for when Tr yields a generic rectangulation. In order
to state this condition, we introduce a couple more terms. Call constituent
rectangles r, s orthogonally visible relative to each other if there is a horizon-
tal or vertical line that passes through the interior of both r and s. Figure
3.2 shows an example; the focused rectangle r is bounded by dotted lines,
and the rectangles that are not orthogonally visible relative to r are shaded.
Call a constituent rectangle r universally visible if r is orthogonally visible
relative to every other constituent rectangle. We may now state:

Theorem 3.1. Suppose R is a condensed rectangulation and r is a con-
stituent rectangle. Then central inversion about r yields a generic rectangu-
lation if and only if r is universally visible.

Proof. This follows from careful scrutiny of the effect of applying Tr to the
assembly of constituent rectangles of R. Let δ1, δ2 be cardinal directions that
are perpendicular to each other. Let S1 (respectively S2) be the union of all
of the constituent rectangles of R that are visible from r in the direction of
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r

Figure 3.2. Orthogonal visibility.

Figure 3.3. Visible regions S1 and S2.

δ1 (respectively δ2). Next, let S be the set of constituent rectangles s of R
such that s is not orthogonally visible from r but is visible from a rectangle
in S1 or S2. (See Figure 3.3.) The main observation is that the region
Tr(S1) ∩ Tr(S2) coincides with the region obtained by rotating the union of
the rectangles in S by 180◦, as restricted to the quadrant generated by δ1
and δ2. Figure 3.4 shows an example.

After this is established, we recall that none of the rectangles of S are
visible from r. In more detail, if r is universally visible, then there are no
overlapping rectangles in Tr(S). Also, if a constituent rectangle s is not
visible from r, then it appears in some set S for some choice of cardinal
directions. □

3.2. Generalized central inversion. In this section, we show how to cen-
trally invert a weakly equivalent rectangulation about any constituent rec-
tangle. More specifically, we prove:
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Figure 3.4. Overlapping regions caused by central inversion.
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Figure 3.5. A condensed rectangulation.

Theorem 3.2. Suppose R is a condensed rectangulation and r is a con-
stituent rectangle. Then there is a rectangulation R′ such that R′ is weakly
equivalent to R and the constituent rectangle r′ of R′ which corresponds to
r is universally visible.

We prove this algorithmically. The algorithm inputs a pair (R, r) as
above and outputs permutations on the coordinates which cause the focused
constituent rectangle to be universally visible in the new rectangulation. We
illustrate the algorithm using a running example. In Figure 3.5, one sees a
generic rectangulation. The constituent rectangles are marked with integers
(whose significance appears later). In particular, we note that the shaded
constituent rectangle in Figure 3.5 is not universally visible.

The algorithm depends on the notion of a “zig-zag path,” which we define
here. Suppose R is rectangulation, r is a constituent rectangle of R, and
P0 is a vertex of r. The zig-zag path determined by the triple (R, r, P0) is
defined recursively as follows. The initial point of the path is P0. At the
vertex P0, there are two perpendicular cardinal directions, say δ1 and δ2,
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Figure 3.6. (a) Zig-zag paths. (b) A sector and its segments.

that point along the edges of r and towards P0. Next, for each i, assuming
Pi is known, let Pi+1 be the endpoint of the segment that follows one of
the cardinal directions, either δ1 or δ2, along the segment that contains Pi.
Note that (a) the choice between δ1 and δ2 is uniquely determined because
R is generic, and (b) the directions alternate between the two at each point
Pi. This path eventually terminates at a vertex, say Pk of the bounding
rectangle. Call this path which starts at P0, changes cardinal directions at
each vertex Pi, and ends at Pk the zig-zag path of (R, r, P0). If r is incident
to a bounding corner of R, then the zig-zag path is trivially the point P0.
Similarly, if r is not incident to a bounding corner but incident to a bounding
edge, then the zig-zag path is the line segment joining P0 to P1. Evidently,
there are four zig-zag paths for any given pair (R, r), corresponding to the
vertices of r. Figure 3.6 shows the zig-zag paths which start at the shaded
rectangle.

For a general choice of constituent rectangle r, the four zig-zag paths
starting at r, together with the edges of r, yield a subdivision of the bounding
rectangle into 5 regions. Call the four regions abutting r and bounded
laterally by two zig-zag paths the sectors induced by r. The four sectors
thus correspond to the four cardinal directions {±e1,±e2}. The interior of
a sector is empty precisely when the corresponding edge of r lies on an edge
of the bounding rectangle. Choose a cardinal direction δ ∈ {±e1,±e2} and
an edge e on the side of r corresponding to δ. If σ is a segment that is
perpendicular to δ, then the value of the dot product δ · v does not depend
on the choice of v ∈ σ. Thus, the displacement value of σ relative to δ is
this constant value δ · v for v ∈ σ. If there is no risk of confusion, let δ · σ
denote such a displacement value relative to δ. With a choice of (r, δ), there
is a sequence σ0, σ1, . . . , σk of segments of R with the following properties:

• The segments σi are perpendicular to δ, and hence are mutually
parallel.
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Figure 3.7. Segment exchange.

• Each segment σi lies in in the sector corresponding to e.
• The displacement values δ · σi increase with i.
• The initial segment σ0 contains the edge e.
• The last segment σk coincides with an edge of the bounding rectangle
of R.

Figure 3.6 shows a sector and the corresponding sequence of segments.
In order to construct a rectangulation for which the constituent rectangle

corresponding to r is universally visible, we apply a permutation to the
coordinates that “rearranges” the segments. These permutations depend
on the displacement values of the segments. Thus, as above, assume a
triple (R, r, δ) is given. Also, let σi be the segments determined by (R, r, δ),
as described above. Since R is condensed, the displacement values δ · σi
comprise a sequence of strictly increasing integers. Also, again since R is
condensed, every integer in the interval

Z ∩ [δ · σ0, δ · σk] = {δ · σ0, δ · σ0 + 1, δ · σ0 + 2, . . . , δ · σk}

corresponds to precisely one segment that is perpendicular to δ. Define a
gap value as an integer that lies in this interval but which is not equal to
any of the displacement values δ · σi.

Let R be a condensed rectangulation. Call a segment σ of R slideable in
the cardinal direction δ if the intersection of the translated segment σ + δ
with any other parallel segment has empty relative interior. Since R is
condensed, we may say:

Lemma 3.3. Suppose R is a condensed rectangulation and σ is a segment
that is slideable in the cardinal direction δ. Then there is a unique parallel
segment σ′ of R that is slideable in the direction −δ.

With that, an exchangeable pair is a pair (σ, σ′) of segments such that σ
and σ′ are slideable in opposite cardinal directions. Suppose π = (σ, σ′) is
an exchangeable pair with respect to δ. Then we define a new rectangulation
Rπ by exchanging the segments corresponding to the displacement values
δ · σ and δ · σ′. Figure 3.7 shows the effect of exchanging a pair of vertical
segments on our running example.
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Exchanging segments is related to the notion of a “wall slide” as found,
for instance, in [19] and [9]. A wall slide exchanges two segments, but the
segments are abutted by a common perpendicular segment which has one
endpoint of each segment. For a general segment exchange, by contrast, the
segments are not required to be incident to a common perpendicular seg-
ment. Also note that if R and R′ are related by a segment exchange, then
R and R′ are weakly but not strongly equivalent. In particular, two rectan-
gulations that are related by segment exchange are not globally equivalent.

Finally, we describe how to find a sequence of segment that exchanges will
result in having a universally visible constituent rectangle. This is based on
the observation: If R′ is obtained from R by a segment exchange, then R′ is
weakly equivalent to R. Thus, if R0, R1, . . . , Rk is a sequence of rectangula-
tions where Ri is obtained from Ri−1 by a segment exchange for all i, then
we obtain for each constituent rectangle r0 of R0 a sequence r0, r1, . . . , rk
where each ri is a constituent rectangle of Ri that corresponds to the con-
stituent rectangle ri−1 of Ri−1. We summarize the key step of the algorithm
as follows:

Lemma 3.4. Suppose R is a condensed rectangulation, r is a constituent
rectangle, and δ is a cardinal direction. Let σ0, σ1, . . . , σk be the sequence
of segments as determined by the triple (R, r, δ). If the set of gap values
is nonempty and c is the greatest gap value, then there is a segment σ and
i ∈ {0, 1, . . . , k} such the displacement value of σ relative to δ is c and (σ, σi)
is an exchangeable pair.

Proof. Let σ be the segment such that δ · σ = c. Existence and uniqueness
of σ follows because R is condensed. Also, choose i so that δ · σi is the
greatest displacement value not exceeding c. We claim that (σ, σi) is an
exchangeable pair. Notice that the segment σ does not lie in the interior
of the sector determined by (R, r, δ). This follows from genericity, as no
segment can cross a zig-zag path. Similarly, σi lies in this sector. Hence, the
relative interior of the set (σi+δ)∩σ is empty, and (σ, σi) is an exchangeable
pair. □

The method of finding a suitable sequence of segment exchanges should
now be clear: Whenever there is a gap value, Lemma 3.4 shows how to
construct a weakly equivalent rectangulation with a smaller corresponding
gap value or with fewer gap values. Since R is finite, one can continue to
apply such segment exchanges until no gap values remain. By construction,
the focused rectangle will be universally visible in the last rectangulation in
this sequence after applying this algorithm to all four sides of r. Figure 3.8
shows the result of applying a sequence of segment exchanges that results in
a constituent rectangle having no gap values; equivalently, one may notice
that the focused constituent rectangle is universally visible.

Given this theorem, we see that, up to weak equivalence, central inversion
is well-defined for every constituent rectangle.
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Figure 3.8. No gap values remain.

We note that zig-zag paths and the subdivision they induce have an ana-
logue in the context of Schnyder woods. Suppose G is a planar map. For a
general vertex v of a Schnyder wood T of G (see [15] for definitions), there
are three distinguished paths joining v to vertices on the outer face of G,
analogous to our zig-zag paths. However, whereas the three distinguished
paths of a triple (G,T, v) yield a subdivision of the sphere into four regions
topologically equivalent to subdividing using a tetrahedron, zig-zag paths
yield a subdivision topologically equivalent to that of a cube. One should
consult the article [15] and the references therein for details about this con-
struction, and as it relates to orthogonal surfaces and graph drawing.

4. Proper Markings

In this section, we study rectangulations as they relate to flag orthotopes
of planar maps.

Let R be a generic rectangulation. A marking of R is a linear ordering µ of
the set consisting of the constituent rectangles and the bounding rectangle.
A marked rectangulation is a pair (R,µ), where µ is a marking of R. If R
has n constituent rectangles, then we generally use the values {0, 1, 2, . . . , n}
for the marks and employ the usual linear ordering of Z.

Suppose (R,µ) is a marked rectangulation. Define the the lift of (R,µ)
as the intersection of all connected orthotopes which contain the rectangles

r × {µ(r)} ⊂ R3,

as r ranges over all constituent rectangles, including the bounding rectangle.
Figure 4.1 shows an example of a marked rectangulation and an axonometric
drawing of its lift. In general, if the bounding rectangle is marked zero,
then the lift is the union of the boxes r × [0, µ(r)], as r ranges through
the constituent rectangles. Notice that the lift of (R,µ) is a relaxed sort
of convex hull of the constituent rectangles of R, where each constituent
rectangle lies at the level at which it is marked. We emphasize here that one
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Figure 4.1. A marked rectangulation and its lift.
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Figure 4.2. A local marking.

should not expect the lift of (R,µ), in general, to be orthogonally convex.
Indeed, it is the purpose of this section to study markings whose lifts are
totally orthogonally convex and/or totally spherical.

Figure 4.1 also shows an example of a “corner orthotope”, i.e. an orthog-
onal polytope that can be expressed as a union of boxes with a common
corner at the origin (0, 0, 0) and the opposite corner in the primary octant.
3-dimensional corner orthotopes are essentially the same as corner polyhe-
dra, as studied in [12]. (Another reason why this example is important is
that it represents the Coxeter complex of type A3, corresponding to the
symmetric group on 4 letters. This representation is “faithful” to the Cox-
eter complex in that the rank-r cosets in this complex correspond bijectively
with the r-dimensional faces for all r ∈ {0, 1, 2, 3}.)

4.1. The local constraint. Suppose a rectangulation has a vertex v for
which the incident constituent rectangles are marked according to Figure
4.2. The local constraint at v is the statement:

(4.1) c < min(a, b) or c > max(a, b).
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Figure 4.3. Deleting a corner rectangle.

Call a marking proper if it obeys the local constraint (4.1) at every vertex.
Propriety is related to sphericity: If a vertex v does not satisfy the local
constraint, then v lifts to a point where the boundary of a 2-dimensional
face intersects itself, as, for example, in Figure 2.6. Thus, if the bounding
rectangle is marked zero, then every 2-dimensional face of the lift of µ is
homeomorphic to the disc [0, 1]2 if and only if µ satisfies the local constraint
at every vertex. (Curiously, if a rectangulation R is not generic, i.e. if it
has a point where two segments cross each other, then no marking of R lifts
to a totally spherical orthotope. This is an easy case-by-case analysis that
we omit; up to equivalence, there are only 2 cases to consider. In any case,
generic rectangulations are the focus of these notes.)

4.2. Marking via block deletion. We briefly describe here an algorithm
that yields a proper marking of a given rectangulation. One may find more
details about this in [2], and it is also implicitly described in [16].

Let R be a rectangulation with at least 2 rectangles. The algorithm
proceeds by iteratively removing rectangles from R in a uniquely determined
way and marking the order in which they are removed. Here is a description
of a single iteration: Choose a constituent rectangle r of R that is adjacent
to a corner of the bounding rectangle. Since R is generic, exactly one of
the two edges of r that are not incident to this corner must be a segment
of R, say σ, while the other edge is a proper subset of another segment of
R, say τ . Then we obtain a generic rectangulation R′ from R by “sliding”
σ across r in the direction parallel to τ until it reaches the boundary of
the bounding rectangle. See Figure 4.3 for an illustration of this. Notice
that if R has n ≥ 2 constituent rectangles, then R′ has (n − 1) constituent
rectangles. In successively applying this procedure using the same corner
with each iteration, one obtains a marking of R. We refer to this algorithm
as the block-deletion algorithm. We may state:

Proposition 4.1. The marking induced by the block-deletion algorithm us-
ing in any given corner is proper.

Proof. Notice that for any segment σ of the rectangulation, all of the mark-
ings of constituent rectangles on one side of σ exceed all of the markings on
the other side. This marking therefore obeys the local constraint at every
vertex, and so it is proper. □
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Figure 4.4. A proper marking with an interior peak.

See Figures 2.4, 2.8, and 3.5 for examples of rectangulations that were
marked using the block-deletion algorithm.

We also observe:

Proposition 4.2. Suppose R and R′ are weakly equivalent rectangulations.
Then the block-deletion algorithm yields the same ordering of the correspond-
ing constituent rectangles.

Another topological observation about the block-deletion algorithm is
that it yields a shelling:

Proposition 4.3. Suppose R is a rectangulation that is marked by the block-

deletion algorithm starting in any given corner. Then (a) the union
⋃k

i=1 ri
is homeomorphic to the disc [0, 1]2 for all k, and (b) the intersection rk ∩
(
⋃k−1

i=1 ri) is homeomorphic to the interval [0, 1] for all k.

4.3. Peaks. The main result of this section concerns peaks of a marked
rectangulation, which we now introduce.

Suppose (R,µ) is a marked rectangulation and r a constituent rectangle
of R. Call r a peak of (R,µ) if µ(s) < µ(r) for every constituent rectangle
s that is adjacent to r. Every proper marking of R has at least one peak.
The block-deletion algorithm yields a marking with precisely one peak in
the constituent rectangle of R that is opposite the corner used for the block-
deletion algorithm. The lift of such a marking is thus a corner orthotope for
which every k-dimensional face is orthogonally convex. A proper marking
may have a peak that is not incident to a corner of the bounding rectangle,
as one may see in Figure 4.4. However, it is surprising that a certain kind
of proper marking cannot have more than one peak:

Proposition 4.4. Every marking of a rectangulation whose lift is orthogo-
nally convex and totally spherical has precisely one peak.

Proof. We show that no minimal counterexample exists. Assume that R is a
rectangulation with a proper marking µ for which every constituent rectangle
is marked with the integers {1, 2, 3, . . . , n} and the bounding rectangle is
marked zero. Assume that R has two peaks, say r1 and r2. Then neither r1
nor r2 is marked with 1.

A key observation is that the constituent rectangle marked with 1 must
be adjacent to a corner of the rectangle bounding R. This follows from
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Figure 4.5. Detail in Proof.

orthogonal convexity: If r is a rectangle that is not in a corner and for
which µ(r) = 1, then there are two rectangles, either above and below or
to the left and right that have higher marks. Such a marking would violate
orthogonal convexity.

With that, let r be the constituent rectangle such that µ(r) = 1. Let σ
be the edge of r that coincides with an entire segment of lying interior to
R. The existence and uniqueness of σ is guaranteed by the fact that R is
generic and r is adjacent to the bounding rectangle.

Let R′ be the generic rectangulation obtained from R by sliding r out
from R (necessarily in the direction perpendicular to σ) and let µ′ be the
marking of R′ given by the formula µ′(s′) = µ(s) − 1, where s′ is the con-
stituent rectangle of R′ corresponding to s. Let r′1 and r′2 be the constituent
rectangles of R′ corresponding to r1 and r2. (See Figure 4.5.) Also note
that the lift of (R′, µ′) is also orthogonally convex.

We must consider the possibilities that either r′1 and r′2 are both peaks of
µ′ or they are not. First, suppose r′1 and r′2 are both peaks of µ′. This implies
that we have a way to reduce a marking with two peaks to a marking with
two peaks and fewer rectangles. Thus, since we may apply this reduction
repeatedly, we may assume without loss of generality that r′1 and r′2 are not
both peaks of µ′.

With that, assume r′1 and r′2 are not both peaks of µ′. This implies that
r′1 and r′2 are adjacent in R′. This in turn implies that r1 and r2, while not
adjacent, must be aligned. Moreover, both r1 and r2 must be adjacent to
the rectangle r with µ(r) = 1.

Without loss of generality, assume that σ contains an edge of r1. Thus,
r1 and r are adjacent via σ. Let τ be the segment of R that contains edges
of r1, r2, and r. Without loss of generality, assume that µ(r1) = n and
µ(r2) = n − 1 are the greatest marks, while µ(r) = 1 is the lowest mark.
This in turn implies that there is a fourth rectangle, say r3 that is adjacent
to both r and r1. (See Figure 4.6.) However, any marking µ(r3) must then
violate the local constraint and we arrive at a contradiction. Hence µ cannot
have more than one peak. □

Remarks. We emphasize this theorem as follows. We have three possible
statements regarding a marked rectangulation (R,µ) and its lift:
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Figure 4.7. Marked rectangulations. (a) Orthogonally con-
vex and spherical. (b) Double-peaked and spherical. (c)
Double-peaked and orthogonally convex.

(A) The marking has more than 1 peak.
(B) The lift is orthogonally convex.
(C) The lift is totally spherical.
A corollary of the theorem above is that any two of these three statements

together imply the negative of the third. Moreover, there are markings that
satisfy any two of these statements, but which, according to the theorem,
must violate the third. See Figure 4.7.

Also, it is interesting that the imposition of total sphericity and orthog-
onal convexity leads to the consequence that every orthographic shadow of
such an orthotope is also orthogonally convex. That is, it is easy to make
a 3-dimensional flag orthotope of a planar map that is orthogonally con-
vex and which has a shadow with two peaks. However, such an orthotope
necessarily has at least one 2-dimensional face which is not homeomorphic
to a disc. Stated in the contrapositive, by asking a lift to have two peaks,
one must sacrifice the local constraint somewhere, which is fundamentally a
topological constraint.

5. Some Open Questions

Here are some open questions, most of which are admittedly vague.

5.1. Generalizations of Baxter Permutations. Proper markings allow
us to generalize Baxter permutations. First recall a construction of Baxter
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permutations from [2]: Suppose R is a rectangulation with n constituent
rectangles, and λ, µ : R → {1, 2, 3, . . . , n} are the markings of R obtained
from the block-deletion algorithm using any two adjacent corners of R.
Then, as shown in [2], the permutation µ ◦ λ−1 is a Baxter permutation
on {1, 2, 3, . . . , n}. Also, again as demonstrated in [2], every Baxter permu-
tation arises in such a fashion.

With this idea, we generalize Baxter permutations as follows. As above,
let R be a generic rectangulation, and let λ be the marking of R obtained by
applying the block-deletion algorithm starting in the southwest corner. Let
µ be any proper marking of R. Then the function µ ◦ λ−1 is a permutation
of {1, 2, 3, . . . , n} which may or may not be a Baxter permutation. Can we
enumerate these or estimate their numbers? Can we find a bijection from
these permutations to other well-studied objects? Is there a pattern-avoiding
characterization of these permutations, cf. [3, 4, 17, 19]?

For that matter, we should notice that there are several natural variants
or strengthenings of propriety, as they all guarantee that an orthotope is
topologically nice in one way or another. Here are a few examples, several
of which may be combined:

• The lift is orthogonally convex.
• Every facet of the lift is orthogonally convex.
• Every canonical orthographic shadow of the lift is orthogonally con-
vex.

• The marking coincides with a shelling.

Thus, as above, one may ask about counting these or relating them to
other objects, etc.

Another closely related type of permutation is obtained through central
inversion. Thus, suppose R is a rectangulation with n constituent rectangles,
and suppose µ is a marking of R obtained through block deletion starting in,
say, the southwest corner. Assume that the bounding rectangle is marked
zero. Let r be a constituent rectangle, and let Tr(R) be the generic rectangu-
lation obtained through central inversion about r. Then µ induces a marking
of Tr(R) through weak equivalence (although we should not expect it to be
proper). Let µr be the marking of Tr(R) obtained through block deletion
starting in the southwest corner of Tr(R), where the bounding rectangle is
marked µ(r). The map µr ◦ µ−1 is a permutation of {0, 1, 2, . . . , n}. For
example, the permutation obtained from the inversion depicted in Figure
3.1 yields

(8, 5, 3, 2, 7, 6, 1, 4, 0, 10, 9).

(See Figure 5.1.) As above, there are outstanding analogous combinatorial
questions about these permutations as well. It is important to note that,
due to the fact that we may centrally invert about any given constituent
rectangle, we have such a permutation for every constituent rectangle of a
given rectangulation.
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Figure 5.1. A permutation resulting from central inversion.

5.2. The effect of central inversions on proper markings. Suppose
(R,µ) is a properly marked rectangulation, and r is a constituent rectangle
of R. What do we have to say about the parameters (R,µ, r) in order to
ensure that Tr(R) is properly marked by µ? This author imagines asking
this question for the variants of propriety as described above. We can say
generally that if µ satisfies the local constraint at a vertex v and v lies
interior to a sector determined by (R, r), then µ obeys the local constraint
at Tr(v). However, one should not expect µ to obey the local constraint if
v lies on a zig-zag path.

5.3. Single-coordinate inversion. What happens if we perform central
inversion on only one coordinate in a rectangulation? There are many ques-
tions that one could ask about these generalized rectangulations, but we will
focus on only three.

Figure 5.2 illustrates the application of single-coordinate inversions as
applied to the rectangulation appearing in 3.1. In this case, the focused rec-
tangle is universally visible and there is a pleasant “two-layered” property of
the resulting rectangles: There are well-defined top and bottom subdivisions
of a common orthogonal polygon into rectangles, where the rectangles are
determined by the sectors of the focused rectangle. (Compare the markings
in the figure.) Is universal visibility a necessary and sufficient condition
to ensure that the resulting collection of rectangles has this double-layered
property?

Figure 5.2 also illustrates an example of another question: What are the
most natural ways to define proper markings of these generalized rectangula-
tions? The lifts of the markings depicted in Figure 5.2 are totally spherical
and totally orthogonally convex. What markings of a rectangulation (in
the nongeneralized sense) yield single-coordinate inversions corresponding
to similarly topologically nice orthotopes?

Finally, what is the relation, if any, to slicings of parallelogram polyomi-
noes, cf. [4]?

5.4. Promotable rectangles. Let R be a rectangulation and suppose r is
a constituent rectangle. Call r promotable if there is a weakly equivalent
rectangulation R′ and a proper marking µ of R′ such that the rectangle
r′ corresponding to r is peak of µ. Can we characterize these constituent
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Figure 5.3. Semi-hamiltonian orthotope, with a proper marking.

rectangles in some way? This author imagines a criterion similar to charac-
terizing when a constituent rectangle allows a central inversion (i.e. universal
visibility).

5.5. Semi-hamiltonian rectangulations. Suppose R is a two-layer rect-
angulation. Call R semi-hamiltonian if all of its vertices lie on the bounding
orthogonal polygon of R and every integral point that lies on the bounding
polygon of R is a vertex of R. In other words, R is semi-hamiltonian when
the integral points of the bounding orthogon coincide with the vertices of
R. This is somehow “hamiltonian” because the bounding orthogon serves
as a “cycle” which passes through every vertex of R. Figure 5.3 shows a
semihamiltonian rectangulation that realizes a flag orthotope of the cube
[0, 1]3. A natural problem is to determine which rectangulations (or planar
maps) admit a semihamiltonian rectangulation.
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5.6. Segment-exchange graphs. Let R be a condensed rectangulation.
Define the segment-exchange graph of R as G = (V,E), where V is the set
of all rectangulations that are weakly equivalent to R and E is the set of
pairs {R,R′} of rectangulations such that there is an exchangeable pair that
transforms R to R′. What structures characterize these graphs? Assuming
that the bounding rectangle is [0, w]×[0, h], can we estimate the cardinalities
|V | and |E|, functions of w and h? Similarly, what are the extreme values
that we should expect of these values?
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ominoes: Catalan, Schröder, Baxter, and other sequences, Electron. J. Combin. 26
(2019), no. 3, Paper No. 3.13, 36 pp.
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