16,875 research outputs found

    Exploring the benefit of rerouting multi-period traffic to multi-site data centers

    Get PDF
    In cloud-like scenarios, demand is served at one of multiple possible data center (DC) destinations. Usually, the exact DC that is used can be freely chosen, which leads to an anycast routing problem. Furthermore, the demand volume is expected to change over time, e.g., following a diurnal pattern. Given that virtually all application domains today rely heavily on cloud-like services, it is important that the backbone networks connecting users to the DCs are resilient against failures. In this paper, we consider the problem of resiliently routing multi-period traffic: we need to find routes to both a primary DC and a backup DC (to be used in the case of failure of the primary one, or of the network connection to it), and also account for synchronization traffic between the primary and backup DCs. We formulate this as an optimization problem and adopt column generation, using a path formulation in two sub-problems: the (restricted) master problem selects "configurations" to use for each demand in each of the time epochs it lasts, while the pricing problem (PP) constructs a new "configuration" that can lead to lower overall costs (which we express as the number of network resources, i.e., bandwidth, required to serve the demand). Here, a "configuration" is defined by the network paths followed from the demand source to each of the two selected DCs, as well as that of the synchronization traffic in between the DCs. Our decomposition allows for PPs to be solved in parallel, for which we quantitatively explore the reduction in the time required to solve the overall routing problem. The key question that we address with our model is an exploration of the potential benefits of rerouting traffic from one time epoch to the next: we compare several (re) routing strategies, allowing traffic that spans multiple time periods to i) not be rerouted in different periods, ii) only change the backup DC and routes, or iii) freely change both primary and backup DC choices and the routes toward them

    Spare capacity allocation using shared backup path protection for dual link failures

    Get PDF
    This paper extends the spare capacity allocation (SCA) problem from single link failure [1] to dual link failures on mesh-like IP or WDM networks. The SCA problem pre-plans traffic flows with mutually disjoint one working and two backup paths using the shared backup path protection (SBPP) scheme. The aggregated spare provision matrix (SPM) is used to capture the spare capacity sharing for dual link failures. Comparing to a previous work by He and Somani [2], this method has better scalability and flexibility. The SCA problem is formulated in a non-linear integer programming model and partitioned into two sequential linear sub-models: one finds all primary backup paths first, and the other finds all secondary backup paths next. The results on five networks show that the network redundancy using dedicated 1+1+1 is in the range of 313-400%. It drops to 96-181% in 1:1:1 without loss of dual-link resiliency, but with the trade-off of using the complicated share capacity sharing among backup paths. The hybrid 1+1:1 provides intermediate redundancy ratio at 187-310% with a moderate complexity. We also compare the passive/active approaches which consider spare capacity sharing after/during the backup path routing process. The active sharing approaches always achieve lower redundancy values than the passive ones. These reduction percentages are about 12% for 1+1:1 and 25% for 1:1:1 respectively

    Multipath optimized link state routing for mobile ad hoc networks

    Get PDF
    International audienceMultipath routing protocols for Mobile Ad hoc NETwork (MANET) address the problem of scalability, security (confidentiality and integrity), lifetime of networks, instability of wireless transmissions, and their adaptation to applications. Our protocol, called MP-OLSR (MultiPath OLSR), is a multipath routing protocol based on OLSR. The Multipath Dijkstra Algorithm is proposed to obtain multiple paths. The algorithm gains great flexibility and extensibility by employing different link metrics and cost functions. In addition, route recovery and loop detection are implemented in MP-OLSR in order to improve quality of service regarding OLSR. The backward compatibility with OLSR based on IP source routing is also studied. Simulation based on Qualnet simulator is performed in different scenarios. A testbed is also set up to validate the protocol in real world. The results reveal that MP-OLSR is suitable for mobile, large and dense networks with large traffic, and could satisfy critical multimedia applications with high on time constraints

    On the Limited Communication Analysis and Design for Decentralized Estimation

    Full text link
    This paper pertains to the analysis and design of decentralized estimation schemes that make use of limited communication. Briefly, these schemes equip the sensors with scalar states that iteratively merge the measurements and the state of other sensors to be used for state estimation. Contrarily to commonly used distributed estimation schemes, the only information being exchanged are scalars, there is only one common time-scale for communication and estimation, and the retrieval of the state of the system and sensors is achieved in finite-time. We extend previous work to a more general setup and provide necessary and sufficient conditions required for the communication between the sensors that enable the use of limited communication decentralized estimation~schemes. Additionally, we discuss the cases where the sensors are memoryless, and where the sensors might not have the capacity to discern the contributions of other sensors. Based on these conditions and the fact that communication channels incur a cost, we cast the problem of finding the minimum cost communication graph that enables limited communication decentralized estimation schemes as an integer programming problem.Comment: Updates on the paper in CDC 201
    • …
    corecore