9 research outputs found

    A Convolutional Neural Network model based on Neutrosophy for Noisy Speech Recognition

    Full text link
    Convolutional neural networks are sensitive to unknown noisy condition in the test phase and so their performance degrades for the noisy data classification task including noisy speech recognition. In this research, a new convolutional neural network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic Convolutional Neural Network); is proposed for classification task. Here, speech signals are used as input data and their noise is modeled as uncertainty. In this task, using speech spectrogram, a definition of uncertainty is proposed in neutrosophic (NS) domain. Uncertainty is computed for each Time-frequency point of speech spectrogram as like a pixel. Therefore, uncertainty matrix with the same size of spectrogram is created in NS domain. In the next step, a two parallel paths CNN classification model is proposed. Speech spectrogram is used as input of the first path and uncertainty matrix for the second path. The outputs of two paths are combined to compute the final output of the classifier. To show the effectiveness of the proposed method, it has been compared with conventional CNN on the isolated words of Aurora2 dataset. The proposed method achieves the average accuracy of 85.96 in noisy train data. It is more robust against Car, Airport and Subway noises with accuracies 90, 88 and 81 in test sets A, B and C, respectively. Results show that the proposed method outperforms conventional CNN with the improvement of 6, 5 and 2 percentage in test set A, test set B and test sets C, respectively. It means that the proposed method is more robust against noisy data and handle these data effectively.Comment: International conference on Pattern Recognition and Image Analysis (IPRIA 2019

    Certainty of outlier and boundary points processing in data mining

    Full text link
    Data certainty is one of the issues in the real-world applications which is caused by unwanted noise in data. Recently, more attentions have been paid to overcome this problem. We proposed a new method based on neutrosophic set (NS) theory to detect boundary and outlier points as challenging points in clustering methods. Generally, firstly, a certainty value is assigned to data points based on the proposed definition in NS. Then, certainty set is presented for the proposed cost function in NS domain by considering a set of main clusters and noise cluster. After that, the proposed cost function is minimized by gradient descent method. Data points are clustered based on their membership degrees. Outlier points are assigned to noise cluster and boundary points are assigned to main clusters with almost same membership degrees. To show the effectiveness of the proposed method, two types of datasets including 3 datasets in Scatter type and 4 datasets in UCI type are used. Results demonstrate that the proposed cost function handles boundary and outlier points with more accurate membership degrees and outperforms existing state of the art clustering methods.Comment: Conference Paper, 6 page

    Novel Open Source Python Neutrosophic Package

    Get PDF
    Neutrosophic sets has gained wide popularity and acceptance in both academia and industry. Different fields have successfully adopted and utilized neutrosophic sets. However, there is no open-source implementation that provides the basic neutrosophic concepts. Open-source is a global movement that enables developers to share their source-code, as researchers do share their research ideas and results. Presented Open-source python neutrosophic package is the first of its kind. It utilizes object oriented concepts. It is based on one of the most popular multiparadigm programming languages that is widely used in different academic and industry fields and activities; namely python. Presented package tends to dissolve the barriers and enable both researchers and developers to adopt neutrosophic sets and theory in research and applications. In this paper, the first Open-source, Object-Oriented, Python based Neutrosophic package is presented. This paper intensively scanned neutrosophic sets research attempting to reach the most widely accepted neutrosophic proofs, and then transforming them into source-code. Presented package implements most of the basic neutrosophic concepts. Presented neutrosophic package presents four different classes: Single Valued Neutrosophic Number, Single Valued Neutrosophic Sets, Interval Valued Neutrosophic Number, and Interval Valued Neutrosophic Sets

    A Fast Image Segmentation Algorithm Based on Saliency Map and Neutrosophic Set Theory

    Get PDF

    Speaker Recognition Using Convolutional Neural Network and Neutrosophic

    Get PDF
    Speaker recognition is a process of recognizing persons based on their voice which is widely used in many applications. Although many researches have been performed in this domain, there are some challenges that have not been addressed yet. In this research, Neutrosophic (NS) theory and convolutional neural networks (CNN) are used to improve the accuracy of speaker recognition systems. To do this, at first, the spectrogram of the signal is created from the speech signal and then transferred to the NS domain. In the next step, the alpha correction operator is applied repeatedly until reaching constant entropy in subsequent iterations. Finally, a convolutional neural networks architecture is proposed to classify spectrograms in the NS domain. Two datasets TIMIT and Aurora2 are used to evaluate the effectiveness of the proposed method. The precision of the proposed method on two datasets TIMIT and Aurora2 are 93.79% and 95.24%, respectively, demonstrating that the proposed model outperforms competitive models

    The Encyclopedia of Neutrosophic Researchers, 2nd volume

    Get PDF
    This is the second volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to my invitation. The introduction contains a short history of neutrosophics, together with links to the main papers and books
    corecore