
Neutrosophic Sets and Systems, Vol. 25, 2019 136

University of New Mexico

Novel Open Source Python Neutrosophic Package

Haitham A. El-Ghareeb1,∗

1Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University, 35116, Egypt
∗Correspondence: Author (helghareeb@mans.edu.eg)

Abstract: Neutrosophic sets has gained wide popularity and acceptance in both academia and industry. Different
fields have successfully adopted and utilized neutrosophic sets. However, there is no open-source implementation that
provides the basic neutrosophic concepts. Open-source is a global movement that enables developers to share their
source-code, as researchers do share their research ideas and results. Presented Open-source python neutrosophic
package is the first of its kind. It utilizes object oriented concepts. It is based on one of the most popular multi-
paradigm programming languages that is widely used in different academic and industry fields and activities; namely
python. Presented package tends to dissolve the barriers and enable both researchers and developers to adopt neutro-
sophic sets and theory in research and applications. In this paper, the first Open-source, Object-Oriented, Python based
Neutrosophic package is presented. This paper intensively scanned neutrosophic sets research attempting to reach the
most widely accepted neutrosophic proofs, and then transforming them into source-code. Presented package imple-
ments most of the basic neutrosophic concepts. Presented neutrosophic package presents four different classes: Single
Valued Neutrosophic Number, Single Valued Neutrosophic Sets, Interval Valued Neutrosophic Number, and Interval
Valued Neutrosophic Sets. Presented package source code, test cases, usage examples, and updated documentation
can be found online at https://www.github.com/helghareeb/neutrosophic. Presented neutrosophic
package can be easily integrated into research and applications. This is an ongoing work and research, as neutrosophic
theory is largely expanding, and there are lots of features to cover.

Keywords: Single Valued Neutrosophic Number, Neutrosophic Sets, Open Source, Python

1 Neutrosophic Theory
Neutrosophic sets have been introduced to the literature by Smarandache to handle incomplete, indetermi-
nate, and inconsistent information [18]. In neutrosophic sets, indeterminacy is quantified explicitly through a
new parameter I. Truth-membership (T), indeterminacy membership (I) and falsity-membership (F) are three
independent parameters that are used to define a Neutrosophic Number.

•
N =

{
< x;T •

N
(x) , I •

N
(x) , F •

N
(x) >, x ∈ X

}
x ∈ X, T •

N
(x) , I •

N
(x) , F •

N
(x) ∈ [0, 1] (1.1)

This paper presents the first novel open source implementation of a Neutrosophic Package in Python pro-
gramming language. Proposed implementation aims to facilitate Neutrosophic sets utilization in different
Python based applications. Python programming language has been chosen exclusively for different reasons.
Python is a high-level programming language, that is efficient, supports high-level data structures, and is highly

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200953775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.github.com/helghareeb/neutrosophic

Neutrosophic Sets and Systems, Vol. 25, 2019 137

utilized in different academic and industry disciplines; including big data analytics, artificial intelligence, and
machine learning. There are no reasons that prevents porting the proposed Neutrosophic package implementa-
tion to other programming languages. Porting presented package is a step to take in the near future. However,
Python will be the main focus of this research paper.

Presented characteristics and operations are implemented in the presented Open-Source Python Package
can be found at https://www.github.com/helghareeb/neutrosophic. Presented Neutrosophic
Package development covers the following neutrosophic objects:

• Single Valued Neutrorosphic Number (SVNN)

• Interval Valued Neutrosophic Number (IVNN)

• Single Valued Neutrosophic Sets (SVNS)

• Interval Valued Neutrosophic Sets (IVNS)

Rest of the paper goes as follows:

Section 2 presents a literature review on the most recent areas of applications that utilize neutrosophy theory
and neutrosophic sets. Neutrosophic sets has been widely accepted among different disciplines, and the need
for an open source neutrosophic package implementation has become a necessity.

Section 3 presents the core design methodology and concepts around the presented novel neutrosophic pack-
age. Presented package is object oriented based, that supports open-source concepts, and utilizes some Python
magic to enhance the performance and functionality.

In the following sections, an introduction to the neutrosophic theory of the presented section is high-
lighted, followed by the equation that implements the presented operation. Implementation of the presented
equation is presented immediately after the equation, so the reader can follow each section of the code and
what it is actually responsible for. The complete source code is available at https://www.github.com/
helghareeb/neutrosophic. This paper avoids mathematical proofs of the implemented equations, and
includes external references that include the proofs of the implemented equations and calculations.

Section 4 presents the basic element and the most widely used neutrosophic number, that is the single valued
neutrosophic number (SVNN). SVNNs operations and their implementation are presented in this section.

Section 5 introduces the Single Valued Neutrosophic Sets (SVNS). SVNS consists of multiple SVNNs.
Aggregation operations are presented in this section. Implementation details simplified the calculation, and
hopefully will act as an enabler for researchers in academia and developers in industry as a guidance and
concrete implementation on how to adopt neutrosophic sets in real world applications.

Section 6 highlights one of the most important concepts in neutrosophic theory; that is Interval Valued
Neutrosophic Numbers (IVNNs). Though IVNNs are really important in describing real world cases, they are
tough to implement because they lack the crisp mathematical characteristics presented in SVNNs. This section
presents a simplified way to convert mathematical concepts into concrete implementations.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

https://www.github.com/helghareeb/neutrosophic
https://www.github.com/helghareeb/neutrosophic
https://www.github.com/helghareeb/neutrosophic

138 Neutrosophic Sets and Systems, Vol. 25, 2019

Section 7 presents the Interval Valued Neutrosophic Sets (IVNSs). IVNS is an importnat neutrosophic con-
cept that must be supported in neutrosophic packages. Averaging function of IVNNs is presented.

Section 8 concludes the paper, highlighting the main features and advantages of the presented open source
neutrosophic package, and presents the future work. This is an ongoing work that needs continous develop-
ment, and will grow exponentially as neutrosophic theory, sets, and systems keeps in growing and gaining
wide popularity and acceptance. Paper ends with references.

2 Neutrosophic Sets in Applications and Disciplines
Neutrosophic has been widely adopted in important areas. – Here we need to include important references for
important areas of neutrosophic applications, specially areas where our package can be utilized.

2.1 MADM and MCDM
Utilizing neutrosophic sets in Multi Attributed Decision Making (MADM) and Multi Criteria Decision Making
(MCDM) has gained wide acceptance in research and academia.

Analytic Hierarchy Process (AHP) in neutrosophic environment has gained polpularity and achieved suc-
cess in different cases. In some realistic situations, the decision makers might be unable to assign deterministic
evaluation values to the comparison judgments due to limited knowledge or the differences of individual judg-
ments in group decision making. To overcome these challenges, neutrosophic set theory to have been utilized
to handle the AHP, where each pair-wise comparison judgment is represented as a triangular neutrosophic num-
ber (TNN). [3] presents such a utilization and applies it to a real life example based on expert opinions from
Zagazig University, Egypt. The problem is solved to show the effectiveness of the proposed neutrosophic-AHP
decision making model.

An Extension of Neutrosophic AHP–SWOT Analysis for Strategic Planning and Decision-Making is pre-
sented in [1]. Every organization seeks to set strategies for its development and growth and to do this, it must
take into account the factors that affect its success or failure. The most widely used technique in strategic plan-
ning is SWOT analysis. SWOT examines strengths (S), weaknesses (W), opportunities (O) and threats (T), to
select and implement the best strategy to achieve organizational goals. The chosen strategy should harness the
advantages of strengths and opportunities, handle weaknesses, and avoid or mitigate threats. SWOT analysis
does not quantify factors (i.e., strengths, weaknesses, opportunities and threats) and it fails to rank available
alternatives. To overcome this drawback, [1] integrated it with the analytic hierarchy process (AHP). The AHP
is able to determine both quantitative and the qualitative elements by weighting and ranking them via compar-
ison matrices. Due to the vague and inconsistent information that exists in the real world. The proposed model
have been applied in a neutrosophic environment in a real case study of Starbucks Company to validate the
model.

A Hybrid Neutrosophic Group ANP-TOPSIS Framework for Supplier Selection Problems is presented in
[2]. One of the most significant competitive strategies for organizations is sustainable supply chain manage-
ment (SSCM). The vital part in the administration of a sustainable supply chain is the sustainable supplier
selection, which is a multi-criteria decision-making issue, including many conflicting criteria. The valuation
and selection of sustainable suppliers are difficult problems due to vague, inconsistent and imprecise knowl-
edge of decision makers. In the literature on supply chain management for measuring green performance, the
requirement for methodological analysis of how sustainable variables affect each other, and how to consider

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 139

vague, imprecise and inconsistent knowledge, is still unresolved. [2] provides an incorporated multi-criteria
decision-making procedure for sustainable supplier selection problems (SSSPs). An integrated framework is
presented via interval-valued neutrosophic sets to deal with vague, imprecise and inconsistent information that
exists usually in real world. The analytic network process (ANP) is employed to calculate weights of selected
criteria by considering their interdependencies. For ranking alternatives and avoiding additional comparisons
of analytic network processes, the technique for order preference by similarity to ideal solution (TOPSIS) is
used. The proposed framework is turned to account for analyzing and selecting the optimal supplier. An actual
case study of a dairy company in Egypt is examined within the proposed framework. Comparison with other
existing methods is implemented to confirm the effectiveness and efficiency of the proposed approach.

An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection as a New Trend
in Brain Processing and Analysis is presented in [17]. Personnel selection is a critical obstacle that influences
the success of enterprise. The complexity of personnel selection is to determine efficiently the proper appli-
cant to fulfill enterprise requirements. The decision makers do their best to match enterprise requirements with
the most suitable applicant. Unfortunately, the numerous criteria, alternatives, and goals make the process
of choosing among several applicants very complex and confusing to decision makers. The environment of
decision making is a MCDM surrounded by inconsistency and uncertainty. [17] contributes to support per-
sonnel selection process by integrating neutrosophic Analytical Hierarchy Process (AHP) with Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) to illustrate an ideal solution among different
alternatives. A case study on smart village Cairo Egypt is developed based on decision maker’s judgments rec-
ommendations. The proposed study applies neutrosophic analytical hierarchy process and TOPSIS to enhance
the traditional methods of personnel selection to achieve the ideal solutions. By reaching to the ideal solutions,
the smart village will enhance the resource management for attaining the goals to be a success enterprise. The
proposed method demonstrates a great impact on the personnel selection process rather than the traditional
decision making methods.

Neutrosophic AHP can be used to help decision makers to estimate the influential factors of IoT in enter-
prises. A study that combines AHP methods with neutrosophic techniques to estimate the influential factors
for a successful enterprise is presented in [16].

2.2 Control Systems
The indeterminacy of parameters in actual control systems is inherent property because some parameters in
actual control systems are changeable rather than constants in some cases, such as manufacturing tolerances,
aging of main components, and environmental changes, which present an uncertain threat to actual control
systems. Therefore, these indeterminate parameters can affect the control behavior and performance. [25] de-
velops a new neutrosophic design method that introduces neutrosophic state space models and the neutrosophic
controllability and observability in indeterminate linear systems. Then, establishes a neutrosophic state feed-
back design method for achieving a desired closed-loop state equation or a desired control ratio for single-input
single-output (SISO) neutrosophic linear systems.

2.3 Image Processing and Segmentation
Segmentation is considered as an important step in image processing and computer vision applications, which
divides an input image into various non-overlapping homogenous regions and helps to interpret the image more
conveniently. [11] presents an efficient image segmentation algorithm using neutrosophic graph cut (NGC).
An image is presented in neutrosophic set, and an indeterminacy filter is constructed using the indeterminacy

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

140 Neutrosophic Sets and Systems, Vol. 25, 2019

value of the input image, which is defined by combining the spatial information and intensity information.
The indeterminacy filter reduces the indeterminacy of the spatial and intensity information. A graph is defined
on the image and the weight for each pixel is represented using the value after indeterminacy filtering. The
segmentation results are obtained using a maximum-flow algorithm on the graph.

Medical field touches everyone’s life, and it has benefited a lot from neutrosophic. Fully automated algo-
rithm for image segmentation in medical field is presented in [19]. Such algorithm segments fluid-associated
(fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic
macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based
shortest path method. An image g is transformed into three sets: T (true), I (indeterminate) that represents
noise, and F (false). Fully automatic and accurate breast lesion segmentation that utilizes a novel phase fea-
ture to improve the image quality, and a novel neutrosophic clustering approach to detect the accurate lesion
boundary is presented in [23].

An efficient scheme for unsupervised colour-texture image segmentation using neutrosophic set (NS) and
non-subsampled contourlet transform (NSCT) is presented in [13]. First, the image colour and texture infor-
mation are extracted via CIE Luv colour space model and NSCT, respectively. Then, the extracted colour and
texture information are transformed into the NS domain efficiently by the authors’ proposed approach. In the
NS-based image segmentation, the indeterminacy assessment of the images in the NS domain is notified by the
entropy concept. The lower quantity of indeterminacy in the NS domain, the higher confidence and easier seg-
mentation could be achieved. Therefore, to achieve a better segmentation result, an appropriate indeterminacy
reduction operation is proposed. Finally, the K -means clustering algorithm is applied to perform the image
segmentation in which the cluster number K is determined by the cluster validity analysis.

2.4 Pattern Recognition and Machine Learning
Data clustering, or cluster analysis, is an important research area in pattern recognition and machine learning
which helps the understanding of a data structure for further applications. The clustering procedure is generally
handled by partitioning the data into different clusters where similarity inside clusters and the dissimilarity
between different clusters are high.

New clustering algorithm, neutrosophic c-means (NCM) for uncertain data clustering, which is inspired
from fuzzy c-means and the neutrosophic set framework. To derive such a structure, a novel suitable objective
function is defined and minimized, and the clustering problem is formulated as a constrained minimization
problem, whose solution depends on the objective function in [12].

The work presented in [12] has been extended by [5] via presenting a new clustering algorithm that is called
Kernel Neutrosophic c-Means(KNCM), that has been evaluated through extensive experiments.

3 Proposed Novel Neutrosophic Package Design
Attempting informally to categorize neutrosophic research based implementations, it is clear from scanning the
neutrosophic literature that spreadsheets are the most widely used tool. Though spreadsheets is an excellent
tool for certain types of problems; such as Multi Criteria Decision Making (MCDM), it is not suitable for
automated software systems and machine learning based solutions. The need for an open source neutrosophic
package to be utilized via different programming languages is clear.

An attempt to utilize Object Oriented Programming to build a neutrosophic package was presented in [21]
and [20], and an attempt to use it in e-Learning systems has been presented in [22]. This attempt suffered from

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 141

different shortages, including not only:

• It was not even a close start to implementing the basic operations of any neutrosophic family subset

• It was not an open source based attempt, so its source code was never made available to neutrosophic
research community to be tested, verified, validated, and utilized

• Though that solution utilized Object Oriented Concepts in CSharp, Programming was used only to cal-
culate values to be exported to Microsoft Excel that was used for plotting the graphs. This approach
suffers a lot when developers attempt to integrate it within software solutions.

• Presented OOP CSharp based package has not been tested, verified, or used in real world situations

• There is no clear documentation and illustration of the design of that package. When combined with the
lack of software source code, utilizing such a package is almost impossible

• It is clear that it was a very early immature attempt that never made its way through implementation and
adoption in neutrosophic community or real world examples and projects. There has been no updates or
research papers related to this package since then

In this section, key decisions about the presented novel neutrosophic open source package are discussed.
Those key decisions reflects the philosophy of the package author, and shapes the current state, and the future
state of the neutrosophic package. Those decisions include:

• Programming Language used

• Open Source Choice (Source Code Availability)

• Neutrosophic Package Licensing

• Packaging choices and alternatives

• Programming Methodology

3.1 Python

Python is considered a multilanguage model, where a high-level language is used to interface libraries and
software packages written in low-level languages. In a high-level scientific computing environment, this type
of interoperability with software packages written in low-level languages (e.g., Fortran, C, or C++) is an
important requirement. Python excels at this type of integration, and as a result, Python has become an interface
for setting up and controlling computations that use code written in low-level programming languages for time-
consuming number crunching. This is an important reason for why Python is a popular language for numerical
computing. The multilanguage model enables rapid code development in a high-level language while retaining
most of the performance of low-level languages. [14]

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

142 Neutrosophic Sets and Systems, Vol. 25, 2019

Table 1: MIT License Permissions, Limitations, and Conditions
Permissions Limitations Conditions
XCommercial use 7Liability License and copyright notice
XModification 7Warranty
XDistribution
XPrivate use

3.2 Open Source
Open Source software is a form of intellectual gratification with an intrinsic utility similar to that of scientific
discovery [8]. Emerging as it does from the university and research environment, the movement adopts the
motivations of scientific research, transferring them into the production of technologies that have a potential
commercial value. The process of scientific discovery involves the sharing of results, just as the dictates of the
Open Source movement involve sharing source code. Sharing results enables researchers both to improve their
results through feedback from other members of the scientific community and to gain recognition and hence
prestige for their work. The same thing happens when source code is shared: other members of the group
provide feedback that helps to perfect it, while the fact that the results are clearly visible to everyone confers a
degree of prestige which expands in proportion to the size of the community.

3.3 Neutrosophic Package Licensing
Presented Neutrosophic Package is licensed under the MIT License. Table 1 presents the MIT License Permis-
sions, Limitations, and Conditions. MIT License is a short and simple permissive license with conditions only
requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may
be distributed under different terms and without source code. License and copyright notice condition means
that a copy of the license and copyright notice must be included with the software. License can be found at
https://github.com/helghareeb/neutrosophic/blob/master/LICENSE

3.4 Software Packaging
Effective reuse depends not only on finding and reusing components, but also on the ways those components
are combined [24]. Software engineering provides a number of diverse styles for organizing software systems.
These styles, or architectures, show how to compose systems from components; different styles expect different
kinds of component packaging and different kinds of interactions between the components. Unfortunately,
these styles and packaging distinctions are often implicit; as a consequence, components with appropriate
functionality may fail to work together. Different packaging techniques have been presented in both academia
and industry. Though there is no single agreed on packaging methodology; due to differences in features and
programming languages, different guidelines are available to achieve successful packaging process. Presented
Python Neutrosophic package will be packaged and shipped as a standard Python package.

3.5 Object Oriented Programming
Object oriented programming departs from conventional programming by emphasizing the relationship be-
tween consumers and suppliers of codes rather then the relationship between a programmer and code [10].

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

https://github.com/helghareeb/neutrosophic/blob/master/LICENSE

Neutrosophic Sets and Systems, Vol. 25, 2019 143

Main Object Oriented Concepts include [6]

• Inheritance: a mechanism by which object implementations can be organized to share descriptions

• Object: both a data carrier and executes actions. Object is something that has state, behavior, and identity

• Class: set of objects described by the same declaration and is the basic element of Object Oriented
modeling

• Encapsulation: There are three primary conceptualizations of encapsulation in the literature.

– First conceptualization: a process used to package data with the functions that act on the data

– Second conceptualization: hides the details of the object’s implementation so that clients access
the object only via its defined external interface

– Third conceptualization: information about an object, how that information is processed, kept
strictly together, and separated from everything else

• Method: involves accessing, setting, or manipulating the object’s data

• Message Passing: Message is merely a procedure call from one function to another. Message passing
makes a request to one of object’s methods

• Polymorphism: There are different conceptualization

– First conceptualization: ability to hide different implementations behind a common interface

– Second conceptualization: ability of different objects to respond to the same message and invoke
different responses

– Third conceptualization: ability of different classes to contain different methods of the same name,
which appear to behave the same way in a given context; yet different objects can respond to the
same message with their own behavior

– Fourth conceptualization: refers to late binding or dynamic binding

– Fifth conceptualization: ability of different classes to respond to the same message and each im-
plement the method appropriately

• Abstraction:

– First conceptualization: mechanism that allows representing a complex reality in terms of a sim-
plified model so that irrelevant details can be suppressed in order to enhance understanding

– Second conceptualization: the act of removing certain distinctions between objects so that we can
see commonalities

– Third conceptualization: the act of creating classes to simplify aspects of reality using distinctions
inherent to the problem

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

144 Neutrosophic Sets and Systems, Vol. 25, 2019

4 Single Valued Neutrosophic Number

4.1 Constructor
Section 1 highlighted that each neutrosophic number consists of three elements: truth, indeterminacy, and false
values. Listing 1 highlights the constructor function (the function that gets invoked automatically) when in-
stantiating a new object instance from the Single Valued Neutrosophic Class. New Single Valued Neutrosophic
Number validates the values of T, I, F to satisfy 1.1.

Listing 1: SVNN - Constructor
class SingleValuedNeutrosophicNumber:

def init (self, id, truth, indeterminacy, falsehood):
”””Initialize neutrosophic element
:truth:
:indeterminacy:
:falsehood:”””
assert id is not None, ’provide id for element to be initialized’
assert 0 <= truth <= 1, ’invalid truth value’
assert 0 <= indeterminacy <= 1, ’invalid indeterminacy value’
assert 0 <= falsehood <= 1, ’invalid falsehood value’
assert 0 <= truth + falsehood + indeterminacy <= 3, ’invalid combined sum

↪→ values’
self. id = id
self. truth = truth
self. indeterminacy = indeterminacy
self. falsehood = falsehood

4.2 SVNN Operations
Single Valued Nuetrosophic Numbers arithmetic operations are defined in [15] as follows: Let two single-
valued neutrosophic numbers be

x = 〈Tx, Ix, Fx〉

y = 〈Ty, Iy, Fy〉

4.2.1 SVNN Complement

Calculating SVNN Complement is based on the Equation 4.1 and implemented in Listing 2

xc = 〈Fx, 1− Ix, Tx〉 (4.1)

Listing 2: SVNN - Complement

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 145

def complement(self):
”””
:return: SVNN object with the new TIF values
”””
return SingleValuedNeutrosophicNumber (f’{self. id} complement’, self.

↪→ falsehood, 1 − self. indeterminacy, self. truth)

4.2.2 SVNN is subset of

Identifying either an SVNN is a subset of another SVNN is determined based on the Equation 4.2 and imple-
mented in Listing 3. This method returns a bool value type with either True or False, if the current SVNN
object is a subset of another SVNN.

x ⊆ y ⇐⇒ Tx ≤ Ty, Ix ≥ Iy, Fx ≥ Fy (4.2)

Listing 3: SVNN - is subset of

def is subset of(self, svnn):
”””Check if SVNN is a subset of another SVNN
:param svnn: Single Value Neutrosohpic Number to compare with
:return: True or False
”””
if self. truth <= svnn. truth and self. indeterminacy >= svnn.

↪→ indeterminacy and self. falsehood >= svnn. falsehood:
return True

return False

4.2.3 SVNN Equal

Comparing two SVNN to detect if they are equal or not is calculated based on the Equation 4.3 and imple-
mented in Listing 4. One of the advantages of Python magic is utilized in this function via implementing it as
eq which gives the neutrosophic package capability of comparing two SVNN numbers via the equal sign

operator.

x = y ⇐⇒ x ⊆ y, y ⊆ x (4.3)

Listing 4: SVNN - Equal

def eq (self, svnn):
if self.is subset of(svnn) and svnn.is subset of(self):

return True
return False

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

146 Neutrosophic Sets and Systems, Vol. 25, 2019

4.2.4 SVNN Add

Two SVNNs can be added using the Equation 4.4 and implemented in Listing 5. Added SVNNs return a new
SVNN. Using Python magic by implementing the add functionality through add enables us to utilize the
plus operator ⊕ operator on SVNNs.

x⊕ y = 〈Tx + Ty − TxTy, IxIy, FxFy〉 (4.4)

Listing 5: SVNN Add
def add (self, svnn):
return svnn(f’{self. id} + {svnn. id}’, (self. truth + svnn. truth) − (self.

↪→ truth ∗ svnn. truth), self. indeterminacy ∗ svnn. indeterminacy, self.
↪→ falsehood ∗ svnn. falsehood)

4.2.5 SVNN Multiply by SVNN

Two SVNNs can be multiplied by the Equation 4.5 and implemented in Listing 6. Using Python magic by im-
plementing the multiply functionality through mul enables us to utilize the multiply operator⊗ on SVNNs.

x⊗ y = 〈TxTy, Ix + Iy − IxIy, Fx + Fy − FxFy〉 (4.5)

Listing 6: SVNN Multiply by SVNN
def mul (self, svnn):

return svnn(f’{self. id} ∗ {svnn. id}’, self. truth ∗ svnn. truth, svnn
↪→ . indeterminacy − (self. indeterminacy ∗ svnn. indeterminacy), (
↪→ self. falsehood + svnn. falsehood) − (self. falsehood ∗ svnn.
↪→ falsehood))

4.2.6 SVNN Multiply by Alpha

SVNN can be multiplied by constant (alpha) using the Equation 4.6 and implemented in Listing 7. Multiplying
by constant is an important operation that is very useful in scaling, that is crucial for computer graphics and
image processing, among other fields.

αx = 〈1− (1− Tx)α, Iαx , Fα
x 〉 ←− α > 0 (4.6)

Listing 7: Multiply by Number
def multiply by alpha(self, alpha):

assert alpha > 0, ’Alpha must be larger than zero’
return svnn(f’{self. id} multiplied by {alpha}’, 1 − pow(1 − self.

↪→ truth), alpha, pow(self. indeterminacy, alpha), pow(self.
↪→ falsehood, alpha))

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 147

4.2.7 SVNN Score

Calculating SVNN Score is important for MCDM. Listing 8 presents the implementation of the SVNN Score
function calculated in Equation 4.7

E(x) =
(2 + Tx − Ix − Fx)

3
, E(x) ∈ [0, 1] (4.7)

Listing 8: SVNN Score
def score(self):

return (2 + self. truth − self. indeterminacy − self. falsehood) /
↪→ 3

4.2.8 SVNN Accuracy

SVNN Accuracy also plays an important rule in MCDM. Examples include, not only: rule engines. Listing 9
highlights the Python code that calculates SVNN Accuracy presented in Equation 4.8

H(x) = Tx − Fx, H(x) ∈ [−1, 1] (4.8)

Listing 9: SVNN Accuracy
def accuracy(self):

return self. truth − self. falsehood

4.2.9 SVNN Ranking

The ranking method is based on both the score values of E(x) and E(y) [15] and the accuracy degrees of H(x)
and H(y) has the following relations depicted in Equations 4.9, 4.10, 4.11 and implemented in Listing 10 as
follows:

if E(x) > E(y) then x � y (4.9)

if E(x) = E(y) and H(x) > H(y) then x � y (4.10)

if E(x) = E(y) and H(x) > H(y) then x = y (4.11)

Listing 10: SVNN Rank
def ranking compared to(self, svnn):

”””
:param svnn:
:return: −1 −> Not Applicable, 0 −> equal ranking, 1 −> higher ranking
”””
if self.score() > svnn.score():

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

148 Neutrosophic Sets and Systems, Vol. 25, 2019

return 1
if self.score() == svnn.score() and self.accuracy() > svnn.accuracy()

↪→ :
return 1

if self.score() == svnn.score() and self.accuracy() == svnn.accuracy
↪→ ():
return 0

return −1

4.2.10 SVNN Deneutrosophication / Score Function

Deneutrosophication can be defined as mapping a Single Valued Neutrosophic Number into a crisp output and
is calculated in [7] as

ψ = 1−
√

(1− Tx)2 + I2x + F 2
x

3
(4.12)

Listing 11 presents the Python code required to implement the Equation 4.12

Listing 11: SVNN Deneutrosophy
def deneutrosophy(self):

from math import sqrt, pow
return 1 − (sqrt (((pow(1 − self. truth),2) + pow(self. indeterminacy

↪→ ,2) + pow(self. falsehood,2)) / 3))

4.3 SVNN Helper Methods
Those are additional methods required for coding, debugging, and documentation purposes. SVNN additional
methods are listed in Listing 12

Listing 12: SVNN - Helper Methods
def str (self):
return f’ID: {self. id} − Truth: {self. truth} − Indeterminacy: {self.

↪→ indeterminacy} − Falsehood: {self. falsehood}’

def repr (self):
return f’ID: {self. id} − Truth: {self. truth} − Indeterminacy: {self.

↪→ indeterminacy} − Falsehood: {self. falsehood}’

5 Single Valued Neutrosophic Sets
The implementation in Listing 13 represents thinking of a Single Valued Neutrosophic Set (SVNS) as a Set of
Single Valued Neutrosophic Numbers (SVNNs). Utilizing Object Oriented Concepts in proposed neutrosophic
package, SVNN is presented as a class, and SVNS is presented as another class, and there is an association
relationship between them. This justifies importing SVNN within SVNS class.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 149

Listing 13: SVNS - Constructor
from svnn import SingleValuedNeutrosophicNumber

class SVNSet:
”””This class has association relationship with SVNN
”””

def init (self):
List of SVNNs
self. items = []
Index variable − used for iteration over SVNNs in SVNS
self. idx = −1

5.1 SVNS Hybrid Arithmetic Operators
where ∧ is the t-norm, and ∨is the t-conorm. Hybrid arithmetic and geometric aggregation operators are
defined in [15] as follows

• Single Valued Neutrosophic Number Weighted Arithmetic Average (SVNNWAA)

• Single Valued Neutrosophic Number Weighted Geometric Average (SVNNWGA)

• Single Valued Neutrosophic Number Ordered Weighted Arithmetic Average (SVNNOWAA)

• Single Valued Neutrosophic Number Ordered Weighted Geometric Average (SVNNOWGA)

5.1.1 Single Valued Neutrosophic Number Weighted Arithmetic Average (SVNNWAA)

Listing 14 presents the Python code that calculates SVNWAA as presented in Equation 5.1

SV NNWAA(z1, z2, . . . , zn) =
n∑
j=1

wjzj = 〈1−
n∏
j=1

(1− Tj)wj ,
n∏
j=1

(Uj)
wj ,

n∏
j=1

(Vj)
wj〉 (5.1)

Listing 14: SVNNWAA
def weighted arithmetic average(self, weights):

”””
single−valued neutrosophic number weighted arithmetic average (SVNNWAA)
weights: List of weights of each item − list length must be equal to the length of the items
For more information: Google weighted arithmetic average
or watch https://www.youtube.com/watch?reload=9&v=IuuBU6fwtNo
:return: Three values: T, U, V
”””
assert len(weights) == len(self. items), ’Weights List Length Does Not

↪→ Match Collection SVNN Items’

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

150 Neutrosophic Sets and Systems, Vol. 25, 2019

weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
for item, weight in zip(self. items, weights):

truth total ∗= pow(1 − item. truth, weight)
indetermenacy total ∗= pow(item. indeterminacy, weight)
falsehood total ∗= pow(item. falsehood, weight)

return 1 − truth total, indetermenacy total, falsehood total

5.1.2 Single Valued Neutrosophic Number Weighted Geometric Average (SVNNWGA)

Listing 15 implements Equation 5.2.

SV NNWGA(z1, z2, . . . , zn) =
n∏
j=1

z
wj

j = 〈
n∏
j=1

(Tj)
wj , 1−

n∏
j=1

(1− Uj)wj , 1−
n∏
j=1

(1− Vj)wj〉 (5.2)

Listing 15: SVNNWGA

def weighted geometric average(self, weights):
”””single−valued neutrosophic number weighted geometric average
”””
weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
weights.sort()
for item, weight in zip(self. items, weights):

truth total ∗= pow(item. truth, weight)
indetermenacy total ∗= pow(1 − item. indeterminacy, weight)
falsehood total ∗= pow(1 − item. falsehood, weight)

return truth total, 1 − indetermenacy total, 1 − falsehood total

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 151

5.2 SVNS Geometric Aggregation Operators
5.2.1 Single Valued Neutrosophic Number Ordered Weighted Arithmetic Average (SVNNOWAA)

Listing 16 presents Python implementation of Equation 5.3.

SV NNOWAA(z1, z2, . . . , zn) =
n∑
j=1

ζjzp(j) = 〈1−
n∏
j=1

(1− Tp(j))ζj ,
n∏
j=1

(Up(j))
ζj ,

n∏
j=1

(Vp(j))
ζj〉 (5.3)

Listing 16: SVNNOWAA
def ordered weighted arithmetic average(self, weights, ordered by position =

↪→ False):
assert len(weights) == len(self. items), ’Weights List Length Does Not

↪→ Match Collection SVNN Items’
weights sum = 0.0
for weight in weights:

weights sum += weight
assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
for item, weight in zip(self. items, weights):

truth total ∗= pow(1 − item. truth, weight)
indetermenacy total ∗= pow(item. indeterminacy, weight)
falsehood total ∗= pow(item. falsehood, weight)

return 1 − truth total, indetermenacy total, falsehood total

5.2.2 Single Valued Neutrosophic Number Ordered Weighted Geometric Average (SVNNOWGA)

Listing 17 depicts the implementation of Equation 5.4. Python provides efficient ways that helps in building
such complicated calculations. Here, Weights are sorted to be used for the calculation. Python utilizes efficient
builtin methods, for example like the one presented for sorting.

SV NNOWGA(z1, z2, . . . , zn) =
n∏
j=1

z
ζj
p(j) = 〈

n∏
j=1

(Tp(j))
ζj , 1−

n∏
j=1

(1− Up(j))ζj , 1−
n∏
j=1

(1− Vp(j))ζj〉

(5.4)

Listing 17: SVNNOWGA
def ordered weighted geometric average(self, weights):

”””single−valued neutrosophic number weighted geometric average
”””
weights sum = 0.0

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

152 Neutrosophic Sets and Systems, Vol. 25, 2019

for weight in weights:
weights sum += weight

assert weights sum == 1, ’Weight\’s sum does not equal 1’
truth total = 1.0
indetermenacy total = 1.0
falsehood total = 1.0
The following line is the main difference
weights.sort()
for item, weight in zip(self. items, weights):

truth total ∗= pow(item. truth, weight)
indetermenacy total ∗= pow(1 − item. indeterminacy, weight)
falsehood total ∗= pow(1 − item. falsehood, weight)

return truth total, 1 − indetermenacy total, 1 − falsehood total

5.3 SVNS Helper Methods
Additional helper methods are needed for supporting basic SVNS operations, such as

5.3.1 Add SVNN

Supports adding SVNN to SVNS, as depicted in Listing 18

Listing 18: SVNS - Add SVNN
def add svnn(self, svnn):
TODO: Prevent Duplication

self. items.append(svnn)

5.3.2 Delete SVNN

Supports removing SVNN from SVNS, as implemented in Listing 19

Listing 19: SVNS - Delete SVNN
def delete svnn(self, svnn):

#TODO: Notify user about Exception handling
self. items.remove(svnn)

5.3.3 Retrieve All SVNNs

Retrieving a list of all SVNNs in SVNS is a crucial task. Returned list is an iterable one that can be used for
further processing. Listing 20 presents such functionality implementation.

Listing 20: SVNS - Retrieve All SVNNs
def get all svnns(self):

return self. items

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 153

5.3.4 Count All SVNNs in SVNS

Counting all SVNNs in SVNS is a primitive task. Listing 21 presents the code to implement such a function-
ality. Using Python magic, via utilizing the len enables us to use the len() function syntax over SVNN
object.

Listing 21: SVNS - Count All SVNNs
def len (self):

return len(self. items)

5.3.5 SVNS: is empty

Though checking either SVNS is empty or not can be achieved via len () function, it is important to enable
proposed neutrosophic package to check is empty() in conditionals. Listing 22 depicts such functionality.

Listing 22: SVNS - is empty
def is empty(self):

if len(self) == 0:
return True

return False

5.3.6 SVNS - Iteration

Iteration is a general term for taking each item of something, one after another. While using a loop for example,
going over a group of items is called iteration. An iterable object is an object that has an iter method
which returns an iterator. getitem method can take sequential indexes starting from zero (and raises an
IndexError when the indexes are no longer valid). An iterator is an object with a next method.

Providing iteration functionality within our proposed neutrosophic package is critical, so later users can
either loop, or apply map functionalities over SVNNs within SVNSs. Such characteristic is an important
feature for future use cases. Listing 23 depicts how iteration functionality is implemented in SVNS.

Listing 23: SVNS - Iteration
def iter (self):

return self

def next (self):
self. idx += 1
try:

return self. items[self. idx]
except IndexError:

self. idx = 0
raise StopIteration

def getitem (self, id):
try:

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

154 Neutrosophic Sets and Systems, Vol. 25, 2019

return self. items[id]
except IndexError:

raise StopIteration

6 Interval Valued Neutrosophic Number

Given the following definitions, operational laws can be applied as defined in [9]

•
N1 =

{
< x :

[
TL•
N1

, TU•
N1

]
,

[
IL•
N1

, IU•
N1

]
,

[
FL

•
N1

, FU
•
N1

]
>, x ∈ X

}
•
N2 =

{
< x :

[
TL•
N2

, TU•
N2

]
,

[
IL•
N2

, IU•
N2

]
,

[
FL

•
N2

, FU
•
N2

]
>, x ∈ X

}
Listing 24 presents the IVNN Class Declaration and Constructor. In the presented implementation, t lower

↪→ and t upper for example represents the following mathematical symbols respectively

TL•
N1

, TU•
N1

Listing 24: IVNN Class Declaration and Constructor

class IVNN:

def init (self, id, t lower, t upper, i lower, i upper, f lower, f upper):

assert 0 <= t lower <= 1
assert 0 <= t upper <= 1
assert 0 <= i lower <= 1
assert 0 <= i upper <= 1
assert 0 <= f lower <= 1
assert 0 <= f upper <= 1

assert 0 <= t lower + i lower + f lower <= 3

self. id = id
self. t lower = t lower
self. t upper = t upper
self. i lower = i lower
self. i upper = i upper
self. f lower = f lower
self. f upper = f upper

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 155

6.1 IVNN Operations

6.1.1 IVNN Complement

The complement of an interval valued neutrosophic number

A = 〈[T lA, T rA], [I lA, IrA], [F l
A, F

r
A]〉

is defined by [4] as

Ac = 〈[F l
A, F

r
A], [I

l
A, I

r
A], [T

l
A, T

r
A]〉 (6.1)

Listing 25: IVNN - Complement

def complement(self):
return IVNN(f’{self. id} complement’,
self. f lower,
self. f upper,
self. i lower,
self. i upper,
self. t lower,
self. t upper)

6.1.2 IVNN Add

Two SVNNs can be added using the Equation 6.2 and implemented in Listing 26. Added IVNNs return a new
IVNN. Again, using Python magic by implementing the add functionality through add enables us to utilize
the plus operator ⊕ operator on IVNNs.

•
N1⊕

•
N2 =

〈[
TL•
N1

+ TL•
N2

− TL•
N1

TL•
N2

, TU•
N1

+ TU•
N2

− TU•
N1

TU•
N2

]
,

[
IL•
N1

IL•
N2

, IU•
N1

IU•
N2

]
,

[
FL

•
N1

FL
•
N2

, FU
•
N1

FU
•
N2

]〉
(6.2)

Listing 26: IVNN - Add Two IVNNs

def add (self, ivnn):
return IVNN(f’{self. id} + {ivnn. id}’,
self. t lower + ivnn. t lower − self. t lower ∗ ivnn. t lower,
self. t upper + ivnn. t upper − self. t upper ∗ ivnn. t upper,
self. i lower ∗ ivnn. i lower,
self. i upper ∗ ivnn. i upper,
self. f lower ∗ ivnn. f lower,
self. f upper ∗ ivnn. f upper)

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

156 Neutrosophic Sets and Systems, Vol. 25, 2019

6.1.3 IVNN Multiply by IVNN

Two IVNNs can be multiplied by the Equation 6.3 and implemented in Listing 27. Using Python magic
by implementing the multiply functionality through mul enables us to utilize the multiply operator ⊗ on
IVNNs.

•
N1⊗

•
N2 =

〈[
TL•
N1

TL•
N2

, TU•
N1

TU•
N2

]
,

[
IL•
N1

+ IL•
N2

− IL•
N1

IL•
N2

, IU•
N1

+ IU•
N2

− IU•
N1

IU•
N2

]
,

[
FL

•
N1

+ FL
•
N2

− FL
•
N1

FL
•
N2

, FU
•
N1

+ FU
•
N2

− FU
•
N1

FU
•
N2

]〉
(6.3)

Listing 27: IVNN - Multiply Two IVNNs
def mul (self, ivnn):

return IVNN(f’P{self. id} ∗ {ivnn. id}’,
self. t lower ∗ ivnn. t lower,
self. t upper ∗ ivnn. t upper,
self. i lower + ivnn. i lower − self. i lower ∗ ivnn. i lower,
self. i upper + ivnn. i upper − self. i upper ∗ ivnn. i upper,
self. f lower + ivnn. f lower − self. f lower ∗ ivnn. f lower,
self. f upper + ivnn. f upper − self. f upper ∗ ivnn. f upper)

6.1.4 IVNN Multiply by Alpha

IVNN can be multiplied by constant (alpha) using the Equation 6.4 and implemented in Listing 28.

δ
•
N =

〈[
1−

(
1− TLN

)δ
, 1−

(
1− TUN

)δ]
,
[(
TLN
)δ
,
(
TUN
)δ]

,
[(
FL
N

)δ
,
(
FU
N

)δ]〉
(6.4)

Listing 28: IVNN - Multiply by Alpha
def multiply by(self, alpha):

return IVNN(f’{alpha} ∗ {self. id}’,
1 − pow((1 − self. t lower),alpha),
1 − pow((1 − self. t upper),alpha),
pow(self. i lower, alpha),
pow(self. i upper, alpha),
pow(self. f lower, alpha),
pow(self. i upper, alpha))

7 Interval Valued Neutrosophic Sets

7.1 IVNS - Weighted Average
Interval Neutrosophic Number Weighted Average Operator (INNWA) defined by [26] Let

Aj = 〈TAj
, IAj

, FAj
〉(j = 1, 2, ..., n)

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

Neutrosophic Sets and Systems, Vol. 25, 2019 157

be a collection of IVNNs, and let
INNWA : INNn → INN

INNWAw(A1, A2, . . . , An)
= 〈[1−

∏n
i=1 (1− inf TAi

)wi , 1−
∏n

i=1 (1− supTAi
)wi],

[
∏n

i=1 inf I
wi
Ai
,
∏n

i=1 sup I
wi
Ai
],

[
∏n

i=1 inf F
wi
Ai
,
∏n

i=1 supF
wi
Ai
]〉,

(7.1)

Listing 29 presents Python implementation of 7.1

Listing 29: INNWA

def weighted average(self, weights):
”””
:return: IVNN
”””
weights sum = 0
for weight in weights:

assert 0 <= weight <= 1
weights sum += weight

assert weights sum == 1

t lower dot product = 1.0
t upper dot product = 1.0
i lower dot product = 1.0
i upper dot product = 1.0
f lower dot product = 1.0
f upper dot product = 1.0

for ivnn, weight in zip(self. ivnns, weights):
t lower dot product ∗= pow(1 − ivnn. t lower, weight)
t upper dot product ∗= pow(1 − ivnn. t upper, weight)
i lower dot product ∗= pow(ivnn. i lower, weight)
i upper dot product ∗= pow(ivnn. i upper, weight)
f lower dot product ∗= pow(ivnn. f lower, weight)
f upper dot product ∗= pow(ivnn. i upper, weight)

return IVNN(1 − t lower dot product, 1 − t upper dot product,
↪→ i lower dot product, i upper dot product, f lower dot product,
↪→ f upper dot product)

7.2 IVNS Helper Methods

Additional IVNS helper method is presented in Listing 30. IVNS is a collection of IVNNs, and thus the method
add ivnn is presented.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

158 Neutrosophic Sets and Systems, Vol. 25, 2019

Listing 30: IVNN - Helper Methods
def add ivnn(self, ivnn):

self. ivnns.append(ivnn)

8 Conclusion and Future Work
Neutrosophic sets has gained wide popularity and acceptance in different disciplines. This paper presented
an Open Source Python Neutrosophic package. Presented package utilizes Object Oriented Design and im-
plementation concepts. Presented package is licensed under MIT License. Licensing was chosen carefully to
support and enable both open source and neutrosophic community. Python was chosen for this package as a
result of Python’s wide applicability in different paradigms, including mainly Big Data Analytics, Machine
Learning, and Artificial Intelligence. Presented package is an open source one, so developers and researchers
in different disciplines can adopt it effectively. Presented Neutrosophic package is a work on progress, as
Neutrosophic sets and theory becomes more popular and gets utilized in different fields. Presented pack-
age presented support for: Single Valued Neutrosophic Numbers, Single Valued Neutrosophic Sets, Interval
Valued Neutrosophic Numbers, and Interval Valued Neutrosophic Sets. Different operations were presented.
Presented package can be found at https://www.github.com/helghareeb/neutrosophic.

The main challenge was the multiple definitions and proofs for the same operation, with different cal-
culation methods. Example of such a challenge is the Score Function. There are numerous deneutrosophy
functions for the same neutrosophic number, each with its own proof. Future Work includes uploading the
presented Neutrosophic package to one of the most widely utilized Python Package servers. Besides, porting
the presented neutrosophic package into different Programming Languages. Implementing Different Deneu-
trosophication / Score Functions, highlighting the differences between them is another step to take. Support of
Triangular and Trapezoidal Neutrosophic Numbers is another challenge to tackle.

References
[1] ABDEL-BASSET, M., MOHAMED, M., AND SMARANDACHE, F. An extension of neutrosophic ahp–

swot analysis for strategic planning and decision-making. Symmetry 10, 4 (2018), 116.

[2] ABDEL-BASSET, M., MOHAMED, M., AND SMARANDACHE, F. A hybrid neutrosophic group anp-
topsis framework for supplier selection problems. Symmetry 10, 6 (2018), 226.

[3] ABDEL-BASSET, M., MOHAMED, M., ZHOU, Y., AND HEZAM, I. Multi-criteria group decision mak-
ing based on neutrosophic analytic hierarchy process. Journal of Intelligent & Fuzzy Systems 33, 6
(2017), 4055–4066.

[4] AIWU, Z., JIANGUO, D., AND HONGJUN, G. Interval valued neutrosophic sets and multi-attribute
decision-making based on generalized weighted aggregation operator. Journal of Intelligent & Fuzzy
Systems 29, 6 (2015), 2697–2706.

[5] AKBULUT, Y., ŞENGÜR, A., GUO, Y., AND POLAT, K. Kncm: Kernel neutrosophic c-means clustering.
Applied Soft Computing 52 (2017), 714 – 724.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

https://www.github.com/helghareeb/neutrosophic

Neutrosophic Sets and Systems, Vol. 25, 2019 159

[6] ARMSTRONG, D. J. The quarks of object-oriented development. Communications of the ACM 49, 2
(2006), 123–128.

[7] AWANG, A., GHANI, A. T. A., ABDULLAH, L., AND AHMAD, M. F. A dematel method with sin-
gle valued neutrosophic set (svns) in identifying the key contribution factors of setiu wetland’s coastal
erosion. In AIP Conference Proceedings (2018), vol. 1974, AIP Publishing, p. 020011.

[8] BONACCORSI, A., AND ROSSI, C. Why open source software can succeed. Research policy 32, 7
(2003), 1243–1258.

[9] BROUMI, S., NAGARAJAN, D., BAKALI, A., TALEA, M., SMARANDACHE, F., AND LATHAMAH-
ESWARI, M. The shortest path problem in interval valued trapezoidal and triangular neutrosophic envi-
ronment. Complex & Intelligent Systems (Feb 2019).

[10] COX, B. J. Object-oriented programming: an evolutionary approach.

[11] GUO, Y., AKBULUT, Y., ŞENGÜR, A., XIA, R., AND SMARANDACHE, F. An efficient image segmen-
tation algorithm using neutrosophic graph cut. Symmetry 9, 9 (2017).

[12] GUO, Y., AND SENGUR, A. Ncm: Neutrosophic c-means clustering algorithm. Pattern Recognition 48,
8 (2015), 2710 – 2724.

[13] HESHMATI, A., GHOLAMI, M., AND RASHNO, A. Scheme for unsupervised colour–texture image
segmentation using neutrosophic set and non-subsampled contourlet transform. IET Image Processing
10, 6 (2016), 464–473.

[14] JOHANSSON, R. Introduction to computing with python. In Numerical Python. Springer, 2019, pp. 1–41.

[15] LU, Z., AND YE, J. Single-valued neutrosophic hybrid arithmetic and geometric aggregation operators
and their decision-making method. Information 8, 3 (2017).

[16] NABEEH, N. A., ABDEL-BASSET, M., EL-GHAREEB, H. A., AND ABOELFETOUH, A. Neutrosophic
multi-criteria decision making approach for iot-based enterprises. IEEE Access (2019), 1–1.

[17] NABEEH, N. A., SMARANDACHE, F., ABDEL-BASSET, M., EL-GHAREEB, H. A., AND ABOELFE-
TOUH, A. An integrated neutrosophic-topsis approach and its application to personnel selection: A new
trend in brain processing and analysis. IEEE Access 7 (2019), 29734–29744.

[18] OTAY, İ., AND KAHRAMAN, C. A State-of-the-Art Review of Neutrosophic Sets and Theory. Springer
International Publishing, Cham, 2019, pp. 3–24.

[19] RASHNO, A., KOOZEKANANI, D. D., DRAYNA, P. M., NAZARI, B., SADRI, S., RABBANI, H., AND

PARHI, K. K. Fully automated segmentation of fluid/cyst regions in optical coherence tomography
images with diabetic macular edema using neutrosophic sets and graph algorithms. IEEE Transactions
on Biomedical Engineering 65, 5 (May 2018), 989–1001.

[20] SALAMA, A., ABD EL FATTAH, A., EL-GHAREEB, H., AND M MANIE, A. Design and implementation
of neutrosophic data operations using object oriented programming. International Journal of Computer
Application 4 (10 2014), 163–175.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

160 Neutrosophic Sets and Systems, Vol. 25, 2019

[21] SALAMA, A., EL-GHAREEB, H. A., MANIE, A. M., AND SMARANDACHE, F. Introduction to develop
some software programs for dealing with neutrosophic sets. Neutrosophic Sets and Systems (2014), 51.

[22] SALAMA, A., MANIE, A., AND LOTFY, M. Utilizing neutrosophic set in social network analysis e-
learning systems. International Journal of Information Science and Intelligent System 3 (2014), 61–72.

[23] SHAN, J., CHENG, H., AND WANG, Y. A novel segmentation method for breast ultrasound images
based on neutrosophic l-means clustering. Medical physics 39, 9 (2012), 5669–5682.

[24] SHAW, M. Architectural issues in software reuse: It’s not just the functionality, it’s the packaging.
SIGSOFT Softw. Eng. Notes 20, SI (Aug. 1995), 3–6.

[25] YE, J., AND CUI, W. Neutrosophic state feedback design method for siso neutrosophic linear systems.
Cognitive Systems Research 52 (2018), 1056 – 1065.

[26] ZHANG, H.-Y., WANG, J.-Q., AND CHEN, X.-H. Interval neutrosophic sets and their application in
multicriteria decision making problems. The Scientific World Journal 2014 (2014).

Received: December 15, 2018. Accepted: March 13, 2019.

Haitham A. El-Ghareeb, Novel Open Source Python Neutrosophic Package.

	Neutrosophic Theory
	Neutrosophic Sets in Applications and Disciplines
	MADM and MCDM
	Control Systems
	Image Processing and Segmentation
	Pattern Recognition and Machine Learning

	Proposed Novel Neutrosophic Package Design
	Python
	Open Source
	Neutrosophic Package Licensing
	Software Packaging
	Object Oriented Programming

	Single Valued Neutrosophic Number
	Constructor
	SVNN Operations
	SVNN Complement
	SVNN is subset of
	SVNN Equal
	SVNN Add
	SVNN Multiply by SVNN
	SVNN Multiply by Alpha
	SVNN Score
	SVNN Accuracy
	SVNN Ranking
	SVNN Deneutrosophication / Score Function

	SVNN Helper Methods

	Single Valued Neutrosophic Sets
	SVNS Hybrid Arithmetic Operators
	Single Valued Neutrosophic Number Weighted Arithmetic Average (SVNNWAA)
	Single Valued Neutrosophic Number Weighted Geometric Average (SVNNWGA)

	SVNS Geometric Aggregation Operators
	Single Valued Neutrosophic Number Ordered Weighted Arithmetic Average (SVNNOWAA)
	Single Valued Neutrosophic Number Ordered Weighted Geometric Average (SVNNOWGA)

	SVNS Helper Methods
	Add SVNN
	Delete SVNN
	Retrieve All SVNNs
	Count All SVNNs in SVNS
	SVNS: is_empty
	SVNS - Iteration

	Interval Valued Neutrosophic Number
	IVNN Operations
	IVNN Complement
	IVNN Add
	IVNN Multiply by IVNN
	IVNN Multiply by Alpha

	Interval Valued Neutrosophic Sets
	IVNS - Weighted Average
	IVNS Helper Methods

	Conclusion and Future Work

