119,039 research outputs found

    Bounding Worst-Case Response Times of Tasks under PIP

    Get PDF
    Schedulability theory in real-time systems requires prior knowledge of the worst-case execution time (WCET) of every task in the system. One method to determine the WCET is known as static timing analysis. Determination of the priorities among tasks in such a system requires a scheduling policy, which could be either preemptive or nonpreemptive. While static timing analysis and data cache analysis are simplified by using a fully non-preemptive scheduling policy, it results in decreased schedulability. In prior work, a methodology was proposed to bound the data-cache related delay for real-time tasks that, beside having a non-preemptive region (critical section), can otherwise be scheduled preemptively. While the prior approach improves schedulability in comparison to fully non-preemptive methods, it is still conservative in its approach due to its fundamental assumption that a task executing in a critical section may not be preempted by any other task. In this paper, we propose a methodology that incorporates resource sharing policies such as the Priority Inheritance Protocol (PIP) into the calculation of data-cache related delay. In this approach, access to shared resources, which is the primary reason for critical sections within tasks, is controlled by the resource sharing policy. In addition to maintaining correctness of access, such policies strive to limit resource access conflicts, thereby improving the responsiveness of tasks. To the best of our knowledge, this is the first framework that integrates data-cache related delay calculations with resource sharing policies in the context of real-time systems

    A capacity sharing and stealing strategy for open real-time systems

    Get PDF
    This paper focuses on the scheduling of tasks with hard and soft real-time constraints in open and dynamic real-time systems. It starts by presenting a capacity sharing and stealing (CSS) strategy that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) reclaiming unused reserved capacity when jobs complete in less than their budgeted execution time and (ii) stealing reserved capacity from inactive non-isolated servers used to schedule best-effort jobs. CSS is then combined with the concept of bandwidth inheritance to efficiently exchange reserved bandwidth among sets of inter-dependent tasks which share resources and exhibit precedence constraints, assuming no previous information on critical sections and computation times is available. The proposed Capacity Exchange Protocol (CXP) has a better performance and a lower overhead when compared against other available solutions and introduces a novel approach to integrate precedence constraints among tasks of open real-time systems

    The stack resource protocol based on real time transactions

    Get PDF
    Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular

    Flexible Scheduling in Multimedia Kernels: an Overview

    Get PDF
    Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more flexible use of the resources. We will show that we can improve the flexibility and efficiency of multimedia kernels. Therefore we introduce Real Time Transactions (RTT) with Deadline Inheritance policies for a small class of scheduling algorithms and we will evaluate these algorithms for use in a multimedia environmen

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler

    Sources of unbounded priority inversions in real-time systems and a comparative study of possible solutions

    Get PDF
    In the design of real-time systems, tasks are often assigned priorities. Preemptive priority driven schedulers are used to schedule tasks to meet the timing requirements. Priority inversion is the term used to describe the situation when a higher priority task's execution is delayed by lower priority tasks. Priority inversion can occur when there is contention for resources among tasks of different priorities. The duration of priority inversion could be long enough to cause tasks to miss their dead lines. Priority inversion cannot be completely eliminated. However, it is important to identify sources of priority inversion and minimize the duration of priority inversion. In this paper, a comprehensive review of the problem of and solutions to unbounded priority inversion is presented
    • 

    corecore