3 research outputs found

    Golden Ratio Phenomenon of Random Data Obeying von Karman Spectrum

    Get PDF
    von Karman originally deduced his spectrum of wind speed fluctuation based on the Stokes-Navier equation. Taking into account, the practical issues of measurement and/or computation errors, we suggest that the spectrum can be described from the point of view of the golden ratio. We call it the golden ratio phenomenon of the von Karman spectrum. To depict that phenomenon, we derive the von Karman spectrum based on fractional differential equations, which bridges the golden ratio to the von Karman spectrum and consequently provides a new outlook of random data following the von Karman spectrum in turbulence. In addition, we express the fractal dimension, which is a measure of local self-similarity, using the golden ratio, of random data governed by the von Karman spectrum

    Golden Ratio Phenomenon of Random Data Obeying von Karman Spectrum

    Get PDF
    von Karman originally deduced his spectrum of wind speed fluctuation based on the Stokes-Navier equation. Taking into account, the practical issues of measurement and/or computation errors, we suggest that the spectrum can be described from the point of view of the golden ratio. We call it the golden ratio phenomenon of the von Karman spectrum. To depict that phenomenon, we derive the von Karman spectrum based on fractional differential equations, which bridges the golden ratio to the von Karman spectrum and consequently provides a new outlook of random data following the von Karman spectrum in turbulence. In addition, we express the fractal dimension, which is a measure of local self-similarity, using the golden ratio, of random data governed by the von Karman spectrum

    Optimization with Discrete Simultaneous Perturbation Stochastic Approximation Using Noisy Loss Function Measurements

    Get PDF
    Discrete stochastic optimization considers the problem of minimizing (or maximizing) loss functions defined on discrete sets, where only noisy measurements of the loss functions are available. The discrete stochastic optimization problem is widely applicable in practice, and many algorithms have been considered to solve this kind of optimization problem. Motivated by the efficient algorithm of simultaneous perturbation stochastic approximation (SPSA) for continuous stochastic optimization problems, we introduce the middle point discrete simultaneous perturbation stochastic approximation (DSPSA) algorithm for the stochastic optimization of a loss function defined on a p-dimensional grid of points in Euclidean space. We show that the sequence generated by DSPSA converges to the optimal point under some conditions. Consistent with other stochastic approximation methods, DSPSA formally accommodates noisy measurements of the loss function. We also show the rate of convergence analysis of DSPSA by solving an upper bound of the mean squared error of the generated sequence. In order to compare the performance of DSPSA with the other algorithms such as the stochastic ruler algorithm (SR) and the stochastic comparison algorithm (SC), we set up a bridge between DSPSA and the other two algorithms by comparing the probability in a big-O sense of not achieving the optimal solution. We show the theoretical and numerical comparison results of DSPSA, SR, and SC. In addition, we consider an application of DSPSA towards developing optimal public health strategies for containing the spread of influenza given limited societal resources
    corecore