3 research outputs found

    Automatic Hierarchical Discovery of Quasi-Static Schedules of RVC-CAL Dataflow Programs

    No full text
    International audienceRVC-CAL is an actor-based dataflow language that enables concurrent, modular and portable description of signal processing algorithms. RVC-CAL programs can be compiled to implementation languages such as C/C++ and VHDL for producing software or hardware implementations. This paper presents a methodology for automatic discovery of piecewise-deterministic (quasi-static) execution schedules for RVC-CAL program software implementations. Quasi-static scheduling moves computational burden from the implementable run-time system to design-time compilation and thus enables making signal processing systems more efficient. The presented methodology divides the RVC-CAL program into segments and hierarchically detects quasi-static behavior from each segment: first at the level of actors and later at the level of the whole segment. Finally, a code generator creates a quasi-statically scheduled version of the program. The impact of segment based quasi-static scheduling is demonstrated by applying the methodology to several RVC-CAL programs that execute up to 58 % faster after applying the presented methodology

    Classification-Based Optimization of Dynamic Dataflow Programs

    Get PDF
    International audienceThis chapter reviews dataflow programming as a whole and presents a classification-based methodology to bridge the gap between predictable and dynamic dataflow modeling in order to achieve expressiveness of the programming language as well as efficiency of the implementation. The authors conduct experiments across three MPEG video decoders including one based on the new High Efficiency Video Coding standard. Those dataflow-based video decoders are executed onto two different platforms: a desktop processor and an embedded platform composed of interconnected and tiny Very Long Instruction Word-style processors. The authors show that the fully automated transformations presented can result in a 80% gain in speed compared to runtime scheduling in the more favorable case
    corecore