37 research outputs found

    Online Scheduling on Identical Machines using SRPT

    Full text link
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (\srpt) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that \srpt achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, \srpt is known to achieve total flow time at most that of the optimal solution when given machines of speed 21m2- \frac{1}{m}. Further, it is known that \srpt's competitive ratio improves as the speed increases; \srpt is ss-speed 1s\frac{1}{s}-competitive when s21ms \geq 2- \frac{1}{m}. However, a gap has persisted in our understanding of \srpt. Before this work, the performance of \srpt was not known when \srpt is given (1+\eps)-speed when 0 < \eps < 1-\frac{1}{m}, even though it has been thought that \srpt is (1+\eps)-speed O(1)O(1)-competitive for over a decade. Resolving this question was suggested in Open Problem 2.9 from the survey "Online Scheduling" by Pruhs, Sgall, and Torng \cite{PruhsST}, and we answer the question in this paper. We show that \srpt is \emph{scalable} on mm identical machines. That is, we show \srpt is (1+\eps)-speed O(\frac{1}{\eps})-competitive for \eps >0. We complement this by showing that \srpt is (1+\eps)-speed O(\frac{1}{\eps^2})-competitive for the objective of minimizing the k\ell_k-norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of \srpt. Our results, combined with previous work, show that \srpt is the best possible online algorithm in essentially every aspect when migration is permissible.Comment: Accepted for publication at SODA. This version fixes an error in a preliminary versio

    Online Scheduling on Identical Machines Using SRPT

    Get PDF
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (SRPT) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that SRPT achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, SRPT is known to achieve total flow time at most that of the optimal solution when given machines of speed 21/m2- 1/m. Further, it is known that SRPT's competitive ratio improves as the speed increases; SRPT is ss-speed 1/s1/s-competitive when s21/ms \geq 2 - 1/m. However, a gap has persisted in our understanding of SRPT. Before this work, we did not know the performance of SRPT when given machines of speed 1+\eps for any 0 < \eps < 1 - 1/m. We answer the question in this thesis. We show that SRPT is scalable on mm identical machines. That is, we show SRPT is (1+\eps)-speed O(1/\eps)-competitive for any \eps > 0. We also show that SRPT is (1+\eps)-speed O(1/\eps^2)-competitive for the objective of minimizing the lkl_k norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of SRPT. Our results, combined with previous work, show that SRPT is the best possible online algorithm in essentially every aspect when migration is permissible

    Non-clairvoyant Scheduling Games

    Full text link
    In a scheduling game, each player owns a job and chooses a machine to execute it. While the social cost is the maximal load over all machines (makespan), the cost (disutility) of each player is the completion time of its own job. In the game, players may follow selfish strategies to optimize their cost and therefore their behaviors do not necessarily lead the game to an equilibrium. Even in the case there is an equilibrium, its makespan might be much larger than the social optimum, and this inefficiency is measured by the price of anarchy -- the worst ratio between the makespan of an equilibrium and the optimum. Coordination mechanisms aim to reduce the price of anarchy by designing scheduling policies that specify how jobs assigned to a same machine are to be scheduled. Typically these policies define the schedule according to the processing times as announced by the jobs. One could wonder if there are policies that do not require this knowledge, and still provide a good price of anarchy. This would make the processing times be private information and avoid the problem of truthfulness. In this paper we study these so-called non-clairvoyant policies. In particular, we study the RANDOM policy that schedules the jobs in a random order without preemption, and the EQUI policy that schedules the jobs in parallel using time-multiplexing, assigning each job an equal fraction of CPU time

    Towards Optimality in Parallel Scheduling

    Full text link
    To keep pace with Moore's law, chip designers have focused on increasing the number of cores per chip rather than single core performance. In turn, modern jobs are often designed to run on any number of cores. However, to effectively leverage these multi-core chips, one must address the question of how many cores to assign to each job. Given that jobs receive sublinear speedups from additional cores, there is an obvious tradeoff: allocating more cores to an individual job reduces the job's runtime, but in turn decreases the efficiency of the overall system. We ask how the system should schedule jobs across cores so as to minimize the mean response time over a stream of incoming jobs. To answer this question, we develop an analytical model of jobs running on a multi-core machine. We prove that EQUI, a policy which continuously divides cores evenly across jobs, is optimal when all jobs follow a single speedup curve and have exponentially distributed sizes. EQUI requires jobs to change their level of parallelization while they run. Since this is not possible for all workloads, we consider a class of "fixed-width" policies, which choose a single level of parallelization, k, to use for all jobs. We prove that, surprisingly, it is possible to achieve EQUI's performance without requiring jobs to change their levels of parallelization by using the optimal fixed level of parallelization, k*. We also show how to analytically derive the optimal k* as a function of the system load, the speedup curve, and the job size distribution. In the case where jobs may follow different speedup curves, finding a good scheduling policy is even more challenging. We find that policies like EQUI which performed well in the case of a single speedup function now perform poorly. We propose a very simple policy, GREEDY*, which performs near-optimally when compared to the numerically-derived optimal policy

    Ordonnancement non-clairvoyant: petites simplifications et améliorations de l'analyse de la famille d'algorithmes LAPSβ

    Get PDF
    International audienceEn 1999, Edmonds [Edmonds1999STOC] introduit un modèle très général de tâches qui traversent différentes phases ayant différentes quantités de travail et capacités à être parallélisées. La force du modèle d'Edmonds est qu'il démontra que même si l'ordonnanceur ne connaît strictement rien des caractéristiques des tâches qu'il est en train d'ordonnancer et est seulement informé de leur arrivée à leur arrivée et de leur complétion à leur complétion, EQUI, qui partage de manière égale les processeurs entre les tâches actives, réussit à être compétitif avec l'ordonnancement optimal hors-line clairvoyant, pour peu qu'EQUI dispose d'un peu plus de deux fois plus de ressources que l'optimum. Ceci signifie que l'ordonnanceur EQUI supporte sans diverger toute charge inférieure à 50%50\%. Nous [RobertSchabanel2008SODA] avons par la suite étendu l'analyse d'Edmonds au cas où les tâches sont composées d'un DAG de processus traversant des phases arbitraires et démontré que l'algorithme non-clairvoyant EQUIoEQUI supporte dans ce cas également toute charge inférieure à 50%. En 2009, Edmonds et Pruhs [EdmondsPruhs2009SODA] ont proposé une nouvelle famille d'algorithmes LAPS_b, avec 00

    Virtual Machine Resource Allocation for Service Hosting on Heterogeneous Distributed Platforms

    Get PDF
    International audienceWe propose algorithms for allocating multiple resources to competing services running in virtual machines on heterogeneous distributed platforms. We develop a theoretical problem formulation and compare these algorithms via simulation experiments based in part on workload data supplied by Google. Our main finding is that vector packing approaches proposed in the homogeneous case can be extended to provide high-quality solutions in the heterogeneous case, and combined to provide a single efficient algorithm. We also consider the case when there may be bounded errors in estimates of performance-related resource needs. We provide a heuristic for compensating for such errors that performs well in simulation, as well as a proof of the worst-case competitive ratio for the single-resource, single-node case when there is no bound on the error
    corecore