20,498 research outputs found

    Efficient job scheduling for a cellular manufacturing environment

    Get PDF
    An important aspect of any manufacturing environment is efficient job scheduling. With an increase in manufacturing facilities focused on producing goods with a cellular manufacturing approach, the need arises to schedule jobs optimally into cells at a specific time. A mathematical model has been developed to represent a standard cellular manufacturing job scheduling problem. The model incorporates important parameters of the jobs and the cells along with other system constraints. With each job and each cell having its own distinguishing parameters, the task of scheduling jobs via integer linear programming quickly becomes very difficult and time-consuming. In fact, such a job scheduling problem is of the NP-Complete complexity class. In an attempt to solve the problem within an acceptable amount of time, several heuristics have been developed to be applied to the model and examined for problems of different sizes and difficulty levels, culminating in an ultimate heuristic that can be applied to most size problems. The ultimate heuristic uses a greedy multi-phase iterative process to first assign jobs to particular cells and then to schedule the jobs within the assigned cells. The heuristic relaxes several variables and constraints along the way, while taking into account the flexibility of the different jobs and the current load of the different cells. Testing and analysis shows that when the heuristic is applied to various size job scheduling problems, the solving time is significantly decreased, while still resulting in a near optimal solution. ii

    A multi-layer perceptron for scheduling cellular manufacturing systems in the presence of unreliable machines and uncertain cost

    Get PDF
    In this paper, a new method is proposed for short-term period scheduling of dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to find best production strategy of in-house manufacturing and outsourcing in small and medium scale cellular manufacturing companies. For this purpose, a multi-period scheduling model has been proposed which is flexible enough to be used in real industries. To solve the proposed problem, a number of metaheuristics are developed including Branch and Bound; Simulated Annealing algorithms; Fuzzy Art Control; Ant Colony Optimization and a hybrid Multi-layer Perceptron and Simulated Annealing algorithms. Our findings indicate that the uncertain condition of system costs affects the routing of product parts and may induce machine-load variations that yield to cell-load diversity. The results showed that the proposed method can significantly reduce cell load variation while finding the best trading off values between in-house manufacturing and outsourcing

    Group Scheduling in a Cellular Manufacturing Shop to Minimise Total Tardiness and nT: a Comparative Genetic Algorithm and Mathematical Modelling Approach

    Get PDF
    In this paper, family and job scheduling in a cellular manufacturing shop is addressed where jobs have individual due dates. The objectives are to minimise total tardiness and the number of tardy jobs. Family splitting among cells is allowed but job splitting is not. Two optimisation methods are employed in order to solve this problem, namely mathematical modelling (MM) and genetic algorithm (GA). The results showed that GA found the optimal solution for most of the problems with high frequency. Furthermore, the proposed GA is efficient compared to the MM especially for larger problems in terms of execution times. Other critical aspects of the problem such as family preemption only, impact of family splitting on common due date scenarios and dual objective scenarios are also solved. In short, the proposed comparative approach provides critical insights for the group scheduling problem in a cellular manufacturing shop with distinctive cases

    Multi-objective group scheduling with learning effect in the cellular manufacturing system

    Get PDF
    Group scheduling problem in cellular manufacturing systems consists of two major steps. Sequence of parts in each part-family and the sequence of part-family to enter the cell to be processed. This paper presents a new method for group scheduling problems in flow shop systems where it minimizes makespan (Cmax) and total tardiness. In this paper, a position-based learning model in cellular manufacturing system is utilized where processing time for each part-family depends on the entrance sequence of that part. The problem of group scheduling is modeled by minimizing two objectives of position-based learning effect as well as the assumption of setup time depending on the sequence of parts-family. Since the proposed problem is NP-hard, two meta heuristic algorithms are presented based on genetic algorithm, namely: Non-dominated sorting genetic algorithm (NSGA-II) and non-dominated rank genetic algorithm (NRGA). The algorithms are tested using randomly generated problems. The results include a set of Pareto solutions and three different evaluation criteria are used to compare the results. The results indicate that the proposed algorithms are quite efficient to solve the problem in a short computational time

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Production planning systems for cellular manufacturing

    Get PDF
    New product development is one of the most powerful but difficult activities in business. It is also a very important factor affecting final product quality. There are many techniques available for new product development. Experimental design is now regarded as one of the most significant techniques. In this article, we will discuss how to use the technique of experimental design in developing a new product - an extrusion press. In order to provide a better understanding of this specific process, a brief description of the extrusion press is presented. To ensure the successful development of the extrusion press, customer requirements and expectations were obtained by detailed market research. The critical and non-critical factors affecting the performance of the extrusion press were identified in preliminary experiments. Through conducting single factorial experiments, the critical factorial levels were determined. The relationships between the performance indexes of the extrusion press and the four critical factors were determined on the basis of multi-factorial experiments. The mathematical models for the performance of the extrusion press were established according to a central composite rotatable design. The best combination of the four critical factors and the optimum performance indexes were determined by optimum design. The results were verified by conducting a confirmatory experiment. Finally, a number of conclusions became evident.

    A genetic algorithm approach to designing and modelling of a multi-functional fractal manufacturing layout

    Get PDF
    A dynamic and optimal shop floor design, modelling and implementation is key to achieving successful Fractal Manufacturing System (FrMS). To build adaptive and fault-tolerant fractal layout, attention is paid to issues of shop floor planning, function layout, determination of capacity level, cell composition planning and flow distances of products. A full fledged FrMS. layout is multi-functional and is capable of producing a variety of products with minimal reconfiguration. This paper is part and a progression of an on-going project whereby Genetic Algorithm (GA) is adopted to design and model a flexible and multi-functional FrMS floor layout. GA is used in the project for modeling and simulation. The design implementation is done using MATLAB. The result is a fault tolerant configuration that self-regulates and adapts to unpredictable changes in the manufacturing environment arising from lead time reduction pressure, inventories, product customization and other challenges of a dynamic and volatile operational environment

    The Integration of Process Planning and Shop Floor Scheduling in Small Batch Part Manufacturing

    Get PDF
    In this paper we explore possibilities to cut manufacturing leadtimes and to improve delivery performance in a small batch part manufacturing shop by integrating process planning and shop floor scheduling. Using a set of initial process plans (one for each order in the shop), we exploit a resource decomposition procedure to determine schedules to determine schedules which minimize the maximum lateness, given these process plans. If the resulting schedule is still unsatisfactory, a critical path analysis is performed to select jobs as candidates for alternative process plans. In this way, an excellent due date performance can be achieved, with a minimum of process planning and scheduling effort

    Scheduling of non-repetitive lean manufacturing systems under uncertainty using intelligent agent simulation

    Get PDF
    World-class manufacturing paradigms emerge from specific types of manufacturing systems with which they remain associated until they are obsolete. Since its introduction the lean paradigm is almost exclusively implemented in repetitive manufacturing systems employing flow-shop layout configurations. Due to its inherent complexity and combinatorial nature, scheduling is one application domain whereby the implementation of manufacturing philosophies and best practices is particularly challenging. The study of the limited reported attempts to extend leanness into the scheduling of non-repetitive manufacturing systems with functional shop-floor configurations confirms that these works have adopted a similar approach which aims to transform the system mainly through reconfiguration in order to increase the degree of manufacturing repetitiveness and thus facilitate the adoption of leanness. This research proposes the use of leading edge intelligent agent simulation to extend the lean principles and techniques to the scheduling of non-repetitive production environments with functional layouts and no prior reconfiguration of any form. The simulated system is a dynamic job-shop with stochastic order arrivals and processing times operating under a variety of dispatching rules. The modelled job-shop is subject to uncertainty expressed in the form of high priority orders unexpectedly arriving at the system, order cancellations and machine breakdowns. The effect of the various forms of the stochastic disruptions considered in this study on system performance prior and post the introduction of leanness is analysed in terms of a number of time, due date and work-in-progress related performance metrics
    corecore