100 research outputs found

    Anti load-balancing for energy-aware distributed scheduling of virtual machines

    Get PDF
    La multiplication de l'informatique en nuage (Cloud) a abouti à la création de centres de données dans le monde entier. Le Cloud contient des milliers de nœuds de calcul. Cependant, les centres de données consomment d'énorme quantités d'énergie à travers le monde estimées à plus de 1,5 % de la consommation mondiale d'électricité et devrait continuer à croître. Une problématique habituellement étudiée dans les systèmes distribués est de répartir équitablement la charge. Mais lorsque l'objectif est de réduire la consommation électrique, ce type d'algorithmes peut mener à avoir des serveurs fortement sous chargés et donc à consommer de l'énergie inutilement. Cette thèse présente de nouvelles techniques, des algorithmes et des logiciels pour la consolidation dynamique et distribuée de machines virtuelles (VM) dans le Cloud. L'objectif principal de cette thèse est de proposer des stratégies d'ordonnancement tenant compte de l'énergie dans le Cloud pour les économies d'énergie. Pour atteindre cet objectif, nous utilisons des approches centralisées et décentralisées. Les contributions à ce niveau méthodologique sont présentées sur ces deux axes. L'objectif de notre démarche est de réduire la consommation de l'énergie totale du centre de données en contrôlant la consommation globale d'énergie des applications tout en assurant les contrats de service pour l'exécution des applications. La consommation d'énergie est réduite en désactivant et réactivant dynamiquement les nœuds physiques pour répondre à la demande des ressources. Les principales contributions sont les suivantes: - Ici on s'intéressera à la problématique contraire de l'équilibrage de charge. Il s'agit d'une technique appelée Anti Load-Balancing pour concentrer la charge sur un nombre minimal de nœuds. Le but est de pouvoir éteindre les nœuds libérés et donc de minimiser la consommation énergétique du système. - Ensuite une approche centralisée a été proposée et fonctionne en associant une valeur de crédit à chaque nœud. Le crédit d'un nœud dépend de son affinité pour ses tâches, sa charge de travail actuelle et sa façon d'effectuer ses communications. Les économies d'énergie sont atteintes par la consolidation continue des machines virtuelles en fonction de l'utilisation actuelle des ressources, les topologies de réseaux virtuels établis entre les machines virtuelles et l'état thermique de nœuds de calcul. Les résultats de l'expérience sur une extension de CloudSim (EnerSim) montrent que l'énergie consommée par les applications du Cloud et l'efficacité énergétique ont été améliorées. - Le troisième axe est consacré à l'examen d'une approche appelée "Cooperative scheduling Anti load-balancing Algorithm for cloud". Il s'agit d'une approche décentralisée permettant la coopération entre les différents sites. Pour valider cet algorithme, nous avons étendu le simulateur MaGateSim. Avec une large évaluation expérimentale d'un ensemble de données réelles, nous sommes arrivés à la conclusion que l'approche à la fois en utilisant des algorithmes centralisés et décentralisés peut réduire l'énergie consommée des centres de données.The multiplication of Cloud computing has resulted in the establishment of largescale data centers around the world containing thousands of compute nodes. However, Cloud consume huge amounts of energy. Energy consumption of data centers worldwide is estimated at more than 1.5% of the global electricity use and is expected to grow further. A problem usually studied in distributed systems is to evenly distribute the load. But when the goal is to reduce energy consumption, this type of algorithms can lead to have machines largely under-loaded and therefore consuming energy unnecessarily. This thesis presents novel techniques, algorithms, and software for distributed dynamic consolidation of Virtual Machines (VMs) in Cloud. The main objective of this thesis is to provide energy-aware scheduling strategies in cloud computing for energy saving. To achieve this goal, we use centralized and decentralized approaches. Contributions in this method are presented these two axes. The objective of our approach is to reduce data center's total energy consumed by controlling cloud applications' overall energy consumption while ensuring cloud applications' service level agreement. Energy consumption is reduced by dynamically deactivating and reactivating physical nodes to meet the current resource demand. The key contributions are: - First, we present an energy aware clouds scheduling using anti-load balancing algorithm : concentrate the load on a minimum number of severs. The goal is to turn off the machines released and therefore minimize the energy consumption of the system. - The second axis proposed an algorithm which works by associating a credit value with each node. The credit of a node depends on its affinity to its jobs, its current workload and its communication behavior. Energy savings are achieved by continuous consolidation of VMs according to current utilization of resources, virtual network topologies established between VMs, and thermal state of computing nodes. The experiment results, obtained with a simulator which extends CloudSim (EnerSim), show that the cloud application energy consumption and energy efficiency are being improved. - The third axis is dedicated to the consideration of a decentralized dynamic scheduling approach entitled Cooperative scheduling Anti-load balancing Algorithm for cloud. It is a decentralized approach that allows cooperation between different sites. To validate this algorithm, we have extended the simulator MaGateSim. With an extensive experimental evaluation with a real workload dataset, we got the conclusion that both the approach using centralized and decentralized algorithms can reduce energy consumed by data centers

    VM Selection Process Management for Live Migration in Cloud Data Centers

    Get PDF
    With immense success and fast growth within the past few years, cloud computing has been established as the dominant computing paradigm in information technology (IT) industry, wherein it utilizes dissipated resource benefits and supports resource sharing and time access flexibility. The proliferation of cloud computing has resulted in the establishment of large-scale data centers across the world, consisting of hundreds of thousands, even millions of servers. The emerging cloud computing paradigm provides administrators and IT organizations with considerable freedom to dynamically migrate virtualized computing services among physical servers in cloud data centers. Normally, these data centers incur very high investment and operating costs for the computing and network devices as well as for the energy consumption. Virtualization and virtual machine (VM) migration offers significant benefits such as load balancing, server consolidation, online maintenance and proactive fault tolerance along data centers. VM migration relies on how to determine the trigger condition of VM migration, select the target virtual machine, and choose the destination node. As a result, dynamic VM migration in the scope of resource management is becoming a crucial issue to emphasize on optimal resource utilization, maximum throughput, minimum response time, enhancing scalability, avoiding over-provisioning of resources and prevention of overload to make cloud computing successful. Intelligent host underload/overload detection, VM selection, and VM placement are the primary means to address VM migration issue. Therefore, these three problems are considered to be the most common tasks in VM migration. This thesis presents novel techniques, models, and algorithms, for distributed dynamic consolidation of virtual machines in cloud data centers. The goal is to improve the utilization of computing resources and reduce energy consumption under workload independent quality of service constraints. The proposed approaches are distributed and efficient in managing the energy-performance trade-off

    Markov Prediction Model for Host Load Detection and VM Placement in Live Migration

    Get PDF
    The design of good host overload/underload detection and virtual machine (VM) placement algorithms plays a vital role in assuring the smoothness of VM live migration. The presence of the dynamic environment that leads to a changing load on the VMs motivates us to propose a Markov prediction model to forecast the future load state of the host. We propose a host load detection algorithm to find the future overutilized/underutilized hosts state to avoid immediate VMs migration. Moreover, we propose a VM placement algorithm to determine the set of candidates hosts to receive the migrated VMs in a way to reduce their VM migrations in near future. We evaluate our proposed algorithms through CloudSim simulation on different types of PlanetLab real and random workloads. The experimental results show that our proposed algorithms have a significant reduction in terms of service-level agreement violation, the number of VM migrations, and other metrics than the other competitive algorithms

    Knowledge-based adaptable scheduler for SaaS providers in cloud computing

    Get PDF
    • …
    corecore