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Abstract

The multiplication of Cloud computing has resulted in the establishment of large-

scale data centers around the world containing thousands of compute nodes. How-

ever, Cloud consume huge amounts of energy. Energy consumption of data centers

worldwide is estimated at more than 1.5% of the global electricity use and is ex-

pected to grow further. A problem usually studied in distributed systems is to

evenly distribute the load. But when the goal is to reduce energy consumption, this

type of algorithms can lead to have machines largely under-loaded and therefore

consuming energy unnecessarily. This thesis presents novel techniques, algorithms,

and software for distributed dynamic consolidation of Virtual Machines (VMs) in

Cloud. The main objective of this thesis is to provide energy-aware scheduling

strategies in cloud computing for energy saving. To achieve this goal, we use cen-

tralized and decentralized approaches. Contributions in this method are presented

these two axes. The objective of our approach is to reduce data center’s total energy

consumed by controlling cloud applications’ overall energy consumption while en-

suring cloud applications’ service level agreement. Energy consumption is reduced

by dynamically deactivating and reactivating physical nodes to meet the current

resource demand. The key contributions are:

• First, we present an energy aware clouds scheduling using anti-load balanc-

ing algorithm : concentrate the load on a minimum number of severs. The

goal is to turn off the machines released and therefore minimize the energy

consumption of the system.

• The second axis proposed an algorithm which works by associating a credit

value with each node. The credit of a node depends on its affinity to its jobs,

its current workload and its communication behavior. Energy savings are

achieved by continuous consolidation of VMs according to current utilization

of resources, virtual network topologies established between VMs, and thermal

state of computing nodes. The experiment results, obtained with a simulator

which extends CloudSim (EnerSim), show that the cloud application energy

consumption and energy efficiency are being improved.
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• The third axis is dedicated to the consideration of a decentralized dynamic

scheduling approach entitled Cooperative scheduling Anti-load balancing Al-

gorithm for cloud. It is a decentralized approach that allows cooperation

between different sites. To validate this algorithm, we have extended the

simulator MaGateSim.

With an extensive experimental evaluation with a real workload dataset, we got the

conclusion that both the approach using centralized and decentralized algorithms

can reduce energy consumed by data centers.

Keywords: Energy, Heuristic, Virtual Machines, Cloud, Migration
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Problems and Objectives . . . . . . . . . . . . . . . 5

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . 10

This chapter introduces the context of the research explored in this thesis. It

starts with the fundamental motivations behind decentralized and coordinated orga-

nization of Grid/Cloud systems; including resource allocation systems. The chapter

thereafter provides discussion on the problem and the issues and scope of the work

and the outline of the thesis.

1.1 Motivation

Cloud computing has emerged as a new business model of computation and storage

resources based on the pay-as-you-go model access to potentially significant amounts

of remote datacenter capabilities. Customer billing depends on the services they

have consumed so far. One particularly cloud Services offered by cloud providers

which has gained a lot of attraction over the past years is Infrastructure As-a-Service

(IaaS). In IaaS clouds, resources such as compute and storage are provisioned on-

demand by the cloud providers. Many cloud providers such as Amazon,Google,

Rackspace, SalesForce have appeared and are now offering a huge amount of services

such as compute capacity and data storage on demand. In order to support the
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customers increasingly service demands, cloud providers have deployed an increasing

number of large-scale data centers. The management of such data centers, requires

the cloud providers to solve a number of challenges. Particularly, cloud providers

now design and implement large-scale IaaS cloud computing systems. As Cloud

computing infrastructure consumes enormous amounts of electrical power leading

to operational costs that exceed the cost of the infrastructure in few years, many

researches have been improving energy efficiency.

There are three energy-saving approaches : “do less work”, “slow down” and

“turn off idle elements”. In the “do less work” strategy, the minimum load shall

be executed allowing optimization of process leads to a low energy consumption.

With “slow down” strategy, the faster a process runs, the more resource intensive

it becomes.There are two ways of slowing down processes. They can be run with

adaptive speeds, by selecting the minimal required speed to complete the process

in time. Alternatively, buffering can be introduced so that instead of running a

process immediately upon arrival, one can collect new tasks until the buffer is full

and then execute them in bulk. This allows for components to be temporarily

switched off resulting in lower power consumption. This allows for components to

be temporarily switched off resulting in lower power consumption. The “turn off idle

elements” strategy refers to the possibilities offered by exploiting a low-consumption

state (sleep mode). Basically, the sleep mode aims at switching into an idle mode

the devices during periods of inactivity. Unloaded servers can be dynamically put

into sleep mode during low-load periods, contributing to great power savings. For

data centers and grid/cloud infrastructures, if properly employed, the sleep mode

may represent a very useful mean for limiting power consumption of lightly loaded

sites.

In cloud computing, existing techniques for energy savings can be divided into

two categories : (1) First, Dynamic Voltage/Frequency Scaling (DVFS). Power sav-

ings are obtained by adjusting the operating clock to scale down the supply voltages

for the circuits. Although this approach may achieve a significant reduction of the

energy consumption, it depends on the hardware components’ settings to perform

scaling tasks; (2) Then one of the technologies to reduce energy consumed by a
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data center is to use consolidate technique. It is the merger of several things into

one. Applied to the computer world, it is to assemble more resources into one.

Virtualization was mainly used in server consolidation projects. Server consolida-

tion aims at minimizing the number of physical servers required to host a group of

virtual machines. In this thesis we will use the technique of consolidation. Given

the importance of energy savings, energy-efficient IaaS cloud management systems

must be designed. Several attempts have been made over the past years to design

and implement IaaS cloud management systems to facilitate the creation of private

IaaS clouds.

Given the increasing data center scales, such systems are faced with challenges

in terms of scalability, autonomy, and energy-efficiency. However, many of the

existing attempts to design and implement IaaS cloud systems for private clouds

are still based on centralized architectures, have limited autonomy, and lack of

energy saving mechanisms. Consequently, they are subject to points of failure like

limited scalability and low energy efficiency.

1.2 Research Problems and Objectives

The goal of this thesis is to design, implement, and evaluate energy aware scheduling

algorithms in distributed systems. To achieve its main goal this thesis investigates

the following research problems :

• How to define a scheduling algorithm. Job scheduling strategies have

been studied within a variety of scenarios related to the complexity of business

and scientific computing processes. The goal of job scheduling is to meet the

performance requirements, and get the lowest total power consumption of all

tasks. Energy saving management of distributed systems scheduling strategy

must take the following aspects into account: cyclical, continuity, communica-

tion overhead between node server, data correlation, node heterogeneity and

time limit. In the case of energy consumed in data centers, consolidation is

one of the multiple solutions used. With distributed scheduling algorithms, it

is recommended to chose cooperative techniques;
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• Network structure . The type of algorithm defined in the previous section

depends on how is structured the network : centralized, distributed or hybrid;

• Migration :

– When to migrate VMs. Dynamic VM consolidation comprises two basic

processes: (1) migrating VMs from overloaded servers to avoid perfor-

mance degradation; and (2) migrating VMs from underloaded servers to

improve the utilization of resources and minimize energy consumption.

An important decision that must be made in both situations is deter-

mining when migrating VMs to minimize energy consumption, while

satisfying the defined QoS constraints;

– Which VMs to migrate. Once a decision to migrate VMs is made, it

is necessary to choose one or more VMs from the set of VMs allocated

to the server, which must be reallocated to other servers. The problem

consists in determining the best subset of VMs to migrate to servers

which are not in the same situation, that will provide the most beneficial

system reconfiguration.

– Where to migrate the VMs selected for migration. This is to determine

the best placement of new VMs or the VMs selected on server for migra-

tion to other servers is another essential aspect that affects the quality

of VM consolidation and energy consumption by the system.

• Consolidation :

– When and which physical nodes to switch on/off. To optimize energy

consumption by the system and avoid violations of the QoS requirements,

it is necessary to determine of effective manner, when and which phys-

ical nodes should be disabled to save energy, or reactivated to handle

increases in the demand for resources;

– How to design distributed dynamic VM consolidation algorithms. To

provide scalability and eliminate single points of failure, it is necessary
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to use a decentralized approach for dynamic VM consolidation algo-

rithms. The problem is that traditionally global resources management

algorithms are centralized. Therefore, a good approach is to propose a

distributed dynamic VM consolidation system .

To deal with the challenges associated with the above research problems, the fol-

lowing objectives which are to improve cloud’s total energy efficiency by controlling

cloud applications’ overall energy consumption while ensuring cloud applications’

service level agreement, have been delineated :

• Explore, analyze, and classify the research in the area of energy-efficient com-

puting in order to gain a systematic understanding of the existing techniques

and approaches;

• Develop algorithms for energy-efficient distributed dynamic VM consolidation

for cloud environments satisfying QoS constraints;

• Design and implement a distributed dynamic VM consolidation simulator that

can be used to evaluate the proposed algorithms;

• Ease of task Management : we design a system which is flexible enough to

allow for dynamic addition and removal of servers. As system components

can fail at any time, it is desirable for a system to heal in the event of failures

or reallocate tasks to other servers without human intervention.

– Conservation of the execution context : It must be possible to stop the

execution process of the task and restart it where it has stopped. Exe-

cution time can be reduced when the task migrates to a more powerful

node;

– Slowdown prevention : task slowdown increases the execution time and

therefore increases the energy consumed by hosts and impact users.

• Energy saving : One of our goals is to propose task placements management

algorithms which are capable of creating idle times, transitioning idle servers
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in a power saving state and waking them up once required (e.g. when load

increases).

1.3 Methodology

We study different techniques used in the operation of the Cloud and data centers.

Some research on distributed systems and cloud and energy savings were studied

in chapter 2. To test the proposed algorithms , simulators which manage energy-

efficiency for cloud environment have been developed. These simulators operate in

centralized and decentralized level. We used technical tools such as cooperation,

collaboration and virtualization. To meet the full meaning of sustainability that

can be built on energy-efficient scheduling algorithms proposed , we analyze existing

solutions and compare them to choose one that we are improving. And we show how

the consolidation is able to decrease energy consumption compared to the reduction

of energy costs taking into account the QoS constraints .

1.4 Contributions

This thesis makes the following contributions:

• Scheduling Anti load-balancing Algorithm. Our first contribution is a

Scheduling Anti load-balancing Algorithm (ALBA) technique. This technique

works in conjunction with scheduling algorithms presented in our centralized

and decentralized approaches. It is a technique for real-time tasks which

decides where exactly a task shall execute in a distributed system. In the latter

(distributed systems), a problem usually studied is how to evenly distribute

workload. But when the goal is to reduce energy consumption, this type of

algorithms can lead to have computers largely under-loaded and therefore

consuming energy unnecessarily. Our fields of study will be the management

of virtual machines in the cluster or grid-type systems. Here we will therefore

look at the opposite problem : concentrate the load on a minimum number of

machines. The goal is to turn off the released servers and therefore minimize
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the energy consumption of the system. We will use an algorithm of global

decision: a server is selected, it distribute its load to other servers and then

it switched off. To study this problem we have proceeded in three phases:

(i) Model the problem (ii) Simulation (iii) Experimentation based on virtual

machines.

• Energy aware clouds scheduling using anti load-balancing algorithm.

Cloud computing is a highly scalable and cost-effective infrastructure for run-

ning HPC, enterprise and Web applications. However rapid growth of the de-

mand for computational power by scientific, business and web-applications has

led to the creation of large-scale data centers consuming enormous amounts

of electrical power. Hence, energy-efficient solutions are required to mini-

mize this energy consumed. The objective of our approach is to improve data

center’s total energy efficiency by controlling cloud applications’ overall en-

ergy consumption while ensuring cloud applications’ service level agreement.

This contibution presents an Energy aware clouds scheduling using anti load-

balancing algorithm (EACAB). The proposed algorithm works by associating

a credit value with each node. The credit of a node depends on its affinity

to its jobs, its current workload and its communication behavior. Energy

savings are achieved by continuous consolidation of VMs according to current

utilization of resources, virtual network topologies established between VMs

and thermal state of computing nodes.

• Cooperative scheduling Anti load-balancing Algorithm for cloud.

Due to the characteristics of clouds, meta-scheduling turns out to be an im-

portant scheduling pattern because it is responsible for orchestrating resources

managed by independent local schedulers and bridges the gap between par-

ticipating nodes. Likewise, to overcome issues such as bottleneck, overload-

ing, under loading and impractical unique administrative management, which

are normally led by conventional centralized or hierarchical schemes, the dis-

tributed scheduling scheme is emerging as a promising approach because of

its capability with regards to scalability and flexibility.
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In this contribution, we introduce a decentralized dynamic scheduling ap-

proach entitled Cooperative scheduling Anti load-balancing Algorithm for

cloud (CSAAC) which is based on the idea of CASA [Huang 2013b]. The

goal of CSAAC is to optimize performance and to achieve energy gain over

the scope of overall cloud, instead of individual participating nodes.

• Simulators. We develop a simulator Enersim 1 which exends ALEA and

CloudSim. It is a tool that will be used to simulate a centralized approach.

Then we develop a simulator Enersim 2 which extend MagateSim and Enersim

1. Enersim 2 simulates decentralized algorithms. MaGateSim is extended by

adding properties that allow it to take into account energy and migration.

1.5 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 covers the state of the art. Particularly, it first presents the con-

text of this dissertation by giving a brief introduction to server virtualization,

autonomic computing, and cloud computing. Then, existing energy man-

agement approaches in computing clusters are reviewed. Understanding the

energy saving approaches is mandatory to position the energy management

contributions of this work.

• Chapter 3 presents our contribution. First a scheduling algorithm named

Anti load-balancing Algorithm is presented. Then an energy aware clouds

scheduling using anti load-balancing algorithm is presented. Finally, in order

to improve its scalability, a fully decentralized VM consolidation system based

on an unstructured P2P network of physical machines (PMs) is proposed.

• Chapter 4 presents results of the centralized VM consolidation algorithm and

the fully decentralized VM consolidation algorithm.

• Chapter 5 concludes this manuscript by summarizing our contributions and

presenting future research directions.
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This PhD thesis proposes an energy-efficient IaaS cloud management system

for large-scale virtualized data centers. To provide the necessary background for

our work, in this chapter we present the state of the art in related fields which

include server virtualization, cloud computing, energy efficient management of cloud

and task placement. First, the concept of server virtualization is detailed. Server

virtualization is a fundamental technology which can be used to enable efficient data

center resources utilization. Then, cloud computing is presented. Finally, related

works on schedulling and energy management in cloud are presented.

2.1 Virtualization

This section gives a brief definition of virtualization. Compared to our work, we

focus on CPU virtualization only. Obviously, other hardware subsystems (e.g. mem-

ory and I/O devices) need to be virtualized as well to enable complete server virtual-

ization. System virtualization is becoming ubiquitous in contemporary datacenter.

Consolidating physical servers by building virtual machines (VM) clusters is univer-

sally adopted to maximize the utilization of hardware resources for services. Two

fundamental but challenging requirements are to minimize virtualization overhead

[Mergen 2006] and to guarantee the reliability of the built virtualized infrastructure.

Therefore, low level design of VM architecture is of great significance.

It is common for a company to have a couple of servers running at 15% capacity,

the latter being there to deal with any time to punctual peak loads. A server loaded

at 15% do not consume much less power than a server that is loaded at 90%, and to

consolidate workloads of several servers on only one can be profitable if their peak
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loads do not always coincide. It would even be true if virtualization had a load of

30 % on the computer. Currently with the progress of the technique this value is

greatly exceeded. Virtualization can improve the effectiveness and availability of IT

resources and applications. Server virtualization is supposed to help businesses save

on IT costs. It reduces costs by reducing data center physical infrastructure and

energy consumption. Our study is based on saving energy therefore this virtualiza-

tion technique will be a promising mechanism. Indeed virtualization is fundamental

when it is necessary to use consolidation to reduce the energy consumed in data

centers. With the cloud paradigm being applied broadly and the increased use

of Green IT, virtualization technologies are gaining increasing importance. They

promise energy and cost savings by sharing physical resources, thus making resource

usage more efficient.

After the introduction, the state of the art of virtualized techniques is presented.

Finally, VM live migration is introduced as a basic mechanism allowing to move

VMs between physical machines (PM) with ideally no service downtime.

2.1.1 What is Virtualization?

Virtualization is a technology which provides a virtual version of a device or re-

source, such as a server, storage device, network or even an operating system where

the resource is divided into multiple execution environments. In addition, different

instances of the operating system run simultaneously on a single computer.

A virtual machine must satisfy the following conditions: (i) insulation: two ma-

chines can share physical resources of a single computer, they remain completely

isolated from each other as if they were separate physical machines, (ii) compatibil-

ity: a virtual machine can be used to run any software running on an real computer,

(iv) encapsulation: encapsulates a complete set of virtual hardware resources and

software within a software package, (v) independence material: totally independent

of their underlying hardware.

Multiple isolated virtual environments are created by a software installed on

the server. The virtual environments are sometimes called virtual private servers,

but they are also known as guests, instances, containers or emulations. When
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one physical server is partitioned into several virtual machines, multiple operating

system instances can be deployed, operated and managed at once on that single

physical server (see Figure 2.2). This reduces the number of physical servers used

by a company and therefore increases the gain of energy, the objective of this thesis.

Tasks that would normally run on multiple servers will be from now on a single

server. [Huai 2007] propose to improve resource utilization. Authors provides a

Figure 2.1: Virtual Machine Monitor example

unified integrated operating platform. They summarize up the four characteristics

of virtual machine: transparent, isolation, packaging and heterogeneity.

Virtualization can also help a company cut down on energy consumption, since

there are fewer physical servers consuming power. That’s especially important,

given the trend toward green IT planning and implementation.

2.1.2 Virtualization Techniques

There are many virtualization techniques. Insulation is a technique to trap the

execution of applications in contexts. Another technique is full virtualisation. The

guest OS is not aware of being virtualized and has no way of knowing that sharing

the server with other OS. In contrast to virtualization, with paravirtualization the

OS should be modified to run on a paravirtualization hypervisor. Paravirtualization

is capable to deliver performance by allowing the hypervisor to be aware of the

idioms in the operating system. The performance evaluation of these virtualization
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techniques are studied by [Padala 2007], [Quétier 2007] and [Soltesz 2007].

2.1.3 Benefits of a virtualization

Server virtualization is a technique that can be used in a situation where several

underutilized servers take up more space and consume more resources. This allows

for more efficient use of server resources.

Technology today can combine these requirements with the need for power

servers that are increasingly sought by setting mobility applications and dissem-

ination of data. The efficiency gains achieved through virtualization provides small

businesses with economies which only large companies had previously low. Servers

operate at a very low percentage of their capacity. It is possible through virtualiza-

tion to increase this rate to 80% usage, allowing to save money without sacrificing

essential performance of applications.

Virtualization consolidates applications onto fewer physical host, which can be

easily managed as a shared resource. Nothing changes for applications. Performance

levels remain high, even rise to dramatic benefits. Virtualization consolidates apps

on many fewer physical machines, with high levels performance and benefits such

as : (1) 80% greater utilization of every server; (2) Server count reduced by a

ratio of 10:1 or better; (3) And up to 50% savings in annual capital and operating

costs. [virtualizationVmware 2013]. In case of failure of an application or operating

system, the problem is completely isolated, without impact on other workloads.

And when a server fails, the affected applications may be restarted automatically

on another host. Advances of virtualization techniques are affecting all aspects of

data center operation and hardware. Virtualization has allowed many companies

to reduce expenditures in computer equipment.

2.1.4 VM Live Migration

Live migration is the ability to move a running VM dynamically from one server

to another, without stopping it. When a server is overloaded, some VMs can be

relocated dynamically to another server. When a server is underloaded its VMs
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can be reallocated to another server. Figure 2.2 shows three physical machines

Figure 2.2: Virtualized servers with live migration capability.

with virtualization layer host five instances of operating systems (with one being

migrated between PM 2 and PM 3).

Xen [Barham 2003] and the Internet Suspend-Resume Project [Kozuch 2002]

developed technology to perform migration at the server level. Some commercial

products such as VMotion from VMware [Ward 2002] are well known on the market.

In this thesis we leverage the VM migration mechanism which plays a key role in

consolidation.

2.1.5 Summary

Today, platforms such as Google’s App Engine [GoogleAppEngine 2013], Amazon’s

EC2 [Amazon 2010], AT&T’s Synaptic Hosting [Hosting 2014], and Salesforce’s

Force.com [Salesforce.com 2014] use virtualization techniques to host a variety of

distributed applications.
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Virtualization transforms radically computing for the better utilization of re-

sources available in the data center reducing overall costs and increasing agility.

It reduces operational complexity, maintains flexibility in selecting software and

hardware platforms and product vendors. It also increases agility in managing

heterogeneous virtual environments.

Virtualisation solution appear as alternative approaches for companies to con-

solidate their operation services on a physical infrastructure, whil preserving specific

functionalities inside the Cloud perimeter (e.g., security, fault tolerance, relliabil-

ity). Consolidation approaches are explored to propose some energy reduction while

switching OFF unused computing nodes. Virtualization is a key feature of the

Clouds, since it allows high performance, improved manageability, and fault toler-

ance. It is promoted by several researches to decrease the energy consumption of

large-scal distributed system.

One of the benefits of virtualization is a server and application consolidation.

The benefits include savings on hardware and software, environmental costs, man-

agement, and administration of the server infrastructure. In this thesis we will use

virtual machines which can be used to consolidate the workloads of under-utilized

servers on to fewer machines, perhaps a single machine.

2.2 Cooperation and coordination in Distributed Sys-

tems

In recent years there has been increased interest in decentralized approaches to

solve complex real-world problems such as problems of scalability, coordination of

data center with different local constraints. Many such approaches fall into the area

of distributed systems, where a number of entities work together with a common

interest of solving problems.

Coordination mechanisms are introduced by Christodoulou, Koutsoupias, and

Nanavati [Christodoulou 2004]. A coordination mechanism is a local policy that

assigns a cost to each strategy s, where the cost of s is a function of the users

who have chosen s. Consider, for example, a selfish scheduling algorithm in which
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there are n jobs owned by independent users, m servers, and a processing time

tij for job i on servers j. Each user selects a server on which to schedule its job

with the objective of minimizing its own completion time. The social objective

is to minimize the maximum completion time. A coordination mechanism for this

algorithm is a local policy used by a server leader which determines how to schedule

jobs assigned to this server.The role of the server leader makes members group

work together for a goal or effect to fulfill desired, here minimizing time. It is

important to emphasize that a server’s policy is a function only of the jobs assigned

to that server. This allows the policy to be implemented in a completely distributed

fashion. Coordination mechanisms are closely related to local search algorithms. A

local search algorithm iteratively selects a solution "close" to the current solution

which improves the global objective. It selects the new solution from among those

within some search neighborhood of the current solution. Centralized algorithms

have been designed for this problem in [Bejerano 2004]. We hope to use ideas from

centralized approach to design decentralized algorithms for this problem. It would

be interesting to study coordination mechanisms in this context given that users

may exhibit selfish behavior.

This section briefly introduces cooperation theory, which is a paradigm that

utilizes distributed systems. Then, cooperative and coordination mechanisms are

defined. Finally, related works on cooperative mechanism for pure P2P are pre-

sented.

2.2.1 Cooperation theory

The conditions under which cooperation can emerge in systems with self-interested

participants, when there is no centralized control, and no trusted third-parties, have

been studied in cooperation theory (c.f. [Axelrod 1984]).

The repeated prisoner’s dilemma (PD) provides a useful context as a pivot case

to understand how cooperation can emerge. In the PD, players can adopt either

defect or fully cooperate : defect (D) or cooperate (C). Cooperation results in

a benefit b to the opposing player, but incurs a cost c to the cooperator (where

b > c > 0); defection has no costs or benefits. If the opponent plays C, a player
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gets the reward R = b − c if it also plays C, but it can do even better and get

a temptation T = b if it plays D. On the other hand, if the opponent plays D,

a player gets the lowest payoff S = −c if it plays C, and it gets a punishment

P = 0 if it also defects. In either case, i.e. independent of whether the opponent

plays C or D, it is, therefore, better to play D. In evolutionary settings, payoffs

determine reproductive fitness, and it follows that D is the evolutionarily stable

strategy [Smith 1993]. Another formulation [Taylor 1978] [Hofbauer 1998], admits

pure defection as the only stable equilibrium. The Iterated Prisoner’s Dilemma

consists of two or more agents supposedly accused of a robbery; agents have to

choose between confessing to the crime or refuse participation in it. The settings

are such that it is rational for individual agents to deny, but it is in their collective

interest for all to confess. Given these payoffs, users are tempted to defect because

the payoff for defection is larger then the payoff for cooperation, whether or not the

other user cooperates or defects. The dilemma arise because if both users defect

they each get the lowest payoff, when they could each earn a better payoff if they

had cooperated. Many systems are based on the PD. This is a good example cited in

the problems of cooperation. The prisoner’s dilemma provides a general context for

thinking about situations where two or more nodes have an interest in cooperating

for the migration of their loads but even stronger interest not to do so if the other

does, and no way to coerce the other.

2.2.2 Cooperative Mechanism for Multi-agent system

In multi-agent problem solving, motivation for benevolence among agents is hav-

ing a common goal. Various approaches have been developed for effective resource

allocation to multiple agents which need to interact, and they need to behave co-

operatively rather than greedily to accomplish a common objective.

The main question is, in general, how to better establish cooperation. It is

important to know if agents should be implemented as a diverse set of autonomous

actors and in this case what kind of communication is necessary for agents to

cooperate effectively in the task. An interesting question is whether or not agents

should be coordinated by a central controller.
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In [Yong 2001], authors explore these questions in the context of machine learn-

ing, where a team of neural networks is evolved using genetic algorithms to solve a

cooperative task. The Enforced Subpopulations method of neuroevolution (ESP)

[Gomez 1997][Gomez 1999]), which has proven highly efficient in single-agent rein-

forcement learning tasks, is first extended to multi-agent evolution. The method is

then evaluated in a pursuit-and-evasion task where a team of several predators must

cooperate to capture a fast-moving prey. Their contribution was to show how the

different coordinations of a team of agents affect performance. Results show that

a set of autonomous neural networks, but driven by other behavior, each evolving

cooperatively to control a single predator performs well.

2.2.3 Cooperative Mechanism for Pure P2P

Cooperative distributed systems, commonly called "systems peer-to-peer" are sys-

tems where constituent entities pool local resources to build a global service. These

systems are often in opposition with the client-server systems, however, the distinc-

tion between the roles of client and server is blurred, and participants are generally

two consummers service (eg, clients) and producers (eg server ). The emergence of

this class of systems is often associated with the decreasing cost of computing and

communications resources during the 1990s.

Cooperative distributed systems offer many services. The most commonly used

are content distribution, file sharing, distributed data processing, the execution of

tasks etc...

These systems enable massive resource and information pooling at low cost per

participant and at scales that are difficult to achieve with traditional client-server

systems, while local autonomy and network effects provide resilience against faillures

and atttacks.

The main distinction between these systems and the traditional client-server

model is widespread cooperation between participants in terms of sharing the re-

sources of a inforlation. The main advantage of this system is the cooperation that

makes them very vulnerable to non-cooperative behavior on a large scale. It is there-

fore necessary for the system to be designed such that the participants generally
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cooperate.

Peer-to-peer systems provide a powerful infrastructure for distributed comput-

ing applications on a large scale due to the pooling of cooperative resources of

participants. Cooperation and enough resources are key to enabling a variety of

new applications such as file sharing, content distribution on a large scale and dis-

tributed data processing. Performance in these systems are related to the level of

cooperation between participants in the system.

2.2.3.1 Peer-to-Peer Architectures

The peer-to-peer architectures can be classified according to their different char-

acteristics. We argue that peer-to-peer architectures can be categorize in terms of

their structure: Unstructured and structured. Their architecture is based on the

extent of (de)centralization. Based on this we distinguish the following combina-

tions: centralized unstructured, pure unstructured, hybrid unstructured and pure

structured systems.

• Degree of Decentralization

– Centralized peer-to-peer architectures, This architecture contains

a central server running the vital functions of the system. The central

server is most often used as a directory server or as a central directory

server that stores an overview of the nodes and the available network

resources. It allows peers or nodes to find, locate and share resources with

other peers. A major drawback of these systems is the risk of bottlenecks.

The advantage of using central directory servers is the availability of data

retrieved;

– Pure decentralized architectures Nodes perform functions with-

out the intervention of centralized components. These types of archi-

tectures are theoretically scalable and a high level of fault tolerance.

Examples of pure decentralized peer-to-peer networks are Gnutella 0.4

[Ripeanu 2001], Freenet [Clarke 2002] and Chord [Stoica 2001].
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– Hybrid systems are often hierarchical networks that have character-

istics both centralized and decentralized pure architectures . Therefore

they combine the advantages (eg, the location of effective resources, scal-

ability) while avoiding the disadvantages (eg, bottlenecks, limited QoS)

of these systems. KaZaA [Shin 2006] and Gnutella 0.6 [Ripeanu 2001]

are some examples of such architectures. Further, we argue that BitTor-

rent [Izal 2004] can also be regarded as a hybrid system.

• Degree of Structure. Whether a system is structured depends on how

nodes and data are positioned in the network.

– Unstructured. A system is unstructured when the layout of nodes and

data require no rules and nodes are of an ad hoc manner in the network.

A main feature is a high consumption of bandwidth in the matter of

traffic of messages.

– Structured. In this type of networks, nodes and data are being placed in

a structured way in the network as to be able to efficiently locate data

which increases the possible scalability. Distributed routing tables make

possible to efficiently the connection of nodes, data or other resources to

specific location. The structured systems include: Chord [Stoica 2001],

CAN [Ratnasamy 2001] and Tapestry [Rhea 2001] Freenet [Clarke 2002].

2.2.3.2 Cooperative Mechanism

The mechanism for pure P2P networks of file-sharing applications gives peers which

interact and cooperate with each other in an efficient and effective way. There are

several publications on cooperative scheduling algorithms to enhance collective per-

formance and efficiently utilize network resources [Stoica 2002]. In a P2P network,

a peer can play along with the role of client and server. At its creation, a mem-

ber of P2P network has their own behavior and acts freely as an individual is in

a group or society. Thus, a peer sends requests in the network to find the desired

file. A response message is sent by other peers in the network to respond to the

request. Because the query can reach distant peers, relay message to the request
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Figure 2.3: Flooding in a pure P2P file-sharing network

can be sent to their neighbors peers (fig. 2.3). Therefore it is a system that utilizes

the flooding techniques. A pair relays a request message to all neighbor peers. It

is a powerful system to find a file in a P2P network However, it has been pointed

out that flooding techniques lack scalability because the number of query messages

that traverses a network significantly increase with the growth in the number of

peers. In pure P2P networks logical links can be established between two or more

cooperative peers each time in cooperative system. With this cooperation, requests

are distributed more efficiently and even finds a file more efficiently. Cooperation

may prevent some even having selfish behavior in trying to strengthen and improve

their QoS.
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2.2.3.3 An example of cooperative pure P2P file-sharing networks [Konishi 2006]

Cooperation pure P2P networks in the case of file sharing starts by establishing

logical peer cooperation links. These peers are selected among peers candidates

within each P2P network. These peer candidates are those who are willing to play

the role of cooperation to strengthen and improve their QoS. Consequently reply

messages are transmitted via the logical link between peer cooperation (Fig.2.4).

Figure 2.4: Cooperation of pure P2P file-sharing networks [Konishi 2006]

Several steps are needed to set up cooperation mechanism . The selection of peer

cooperation , the discovery of other P2P networks, the decision to start cooperation

, the relay of messages and file transfer , and the decision to terminate cooperation

in detail are diferent steps of the process. Among these steps, we retain three :

• Establishing a Candidate Network. A pair is a candidate for the

execution of a program of cooperation. In the case where a peer has intending

to enhance and improve its application-level QoS, it runs the cooperation
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program independently of others. The peer does not care whether the other

peers in the same P2P network will benefit from the cooperation or not.

Then, it becomes a candidate peer, i.e., a candidate for cooperative peers. A

new candidate peer finds another candidate peer in the same P2P network

by flooding a special message over the P2P network. On the other hand,

candidate peers in a candidate network send packet messages containing a

service identifier and its address to the network periodically. A new candidate

peer receives one of their packet messages and establishes a logical link to the

candidate peer. An example of cooperation is illustrated in Fig.2.4.

In our decentralized approch we hope that a node (request) can send a flooding

message. Some nodes (response) send a reponse message. The request node

choose a node (candidate) that meet requirements. The example that has just

been explained may be appropriate for our decentralized approach that will

be presented in Chapter 3.

• Selecting Cooperative Peers. Only peers that receive requests for coop-

eration can become cooperative peers. Peer candidates are promoted cooper-

atives pairs and can then launch another cooperative application .

To effectively disseminate messages, cooperative peers must be well chosen.

Logical links are established between peers candidates and building a network

of candidates to exchange information for the selection of peer cooperation. A

peer is selected among the candidates peers , then confirms it is appropriate

as a peer or not to cooperate. When a cooperative peer receives a message

that does not contain the identifier of the network, it sends a request to the

candidat peers that are in a different network. And the selection is initiated

in this new network.

• Finding other P2P networks A new cooperative peer X first finds another

candidate peer Y by flooding a special message over the P2P network. When

the new cooperative peer X in another P2P networks receives this packet mes-

sage that contains a different network address of hers, it sends a cooperation

request to the candidate peer Y, i.e., the sender of the packet message, in
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another P2P network. Next, the selection of a cooperative peer is initiated

by the candidate peer in a newly found P2P network. Then, the coopera-

tion request is forwarded from the candidate peer to a new cooperative peer.

Finally, a logical link is established between those cooperative peers.

• Decision of Starting Cooperation. Finally , after confirmation, a pair

provisional cooperative is selected . The start of the cooperation is related

to the compatibility of the cooperative peer and their ability to find other

peers in a network. A message is initiated to the network in all cooperative

peers. A cooperative peer must get all the information about the type and

characteristics of the latter. After it sets priorities to each of them. When the

two cooperative peers both fulfill requirements then, collaboration is started.

2.2.4 Entities cooperation and coordination in the Grid/Cloud

A distributed sytem is composed of autonomous entities able to perform functional-

ities but also share their capabilities. Their main challenge is managing the interde-

pendencies between entities that are no centralized systems. The efficiency of this

management depends on the coordination and cooperation between the different

entities of the system. Lack of coordination or cooperation results in communica-

tion overhead and eventually reduces performance of the system. The coordination

process (cooperation respectively) with respect to task scheduling and resource

management in distributed system requires the dynamic exchange of information

between the different entities of the system.

For Techopedia [Janssen 2013] a cooperative storage cloud is based on peer-to-

peer architecture . The role of cloud storage service providers is to make available

this service. It builds specialized P2P software to manage the storage and retrieval

of data. In the Symform Cooperative Storage Cloud [symform 2013]each local com-

puter contributes to cheap storage and exchange of valuable cloud-based storage.

Problems related to interdependencies can be solved by coordination mechanism.

A market based mechanism considers the cloud as a virtual market in which eco-

nomic entities interact with each other through the purchase and sale of computing,
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storage resources and services. Such a coordination mechanism is used to facilitate

efficient resource allocation. In such mechanism, the resource provider works as a

manager that exports its local resources to contractors, and resource brokers are

responsible for decision regarding admission control based on negotiated Service

Level Agreements (SLA).

Solving problems related to the interdependence uses the model of decision

making which is the coordination structure. The interaction among entities is co-

ordinated by the utilization of a simple broadcast communication but it is using a

lot of messages so is very expensive : One-to-many communication. Anther type,

One-to-one communication can drastically reduce overhead by adopting among the

resource providers and consumers through establishment of a Service Level Agree-

ment.

2.3 Cloud Computing System

The visions of both the Cloud and the Grid are the same. It is mostly environment

created to reduce the cost of computing and especially increase storage capacity

and computing [Foster 2008]. The term Cloud can be seen as another marketing

term hype of the Grid computing due to the fact they have similar goals. A similar

view is given by many experts defined in [Geelan 2009]. This section briefly intro-

duces cloud computing, which is a computational paradigm that utilizes networked

computing systems in which applications plug into a "power Grid" of computa-

tion for execution. First, the basic principles behind cloud computing are defined.

Afterwards, the cloud characteristics, service models, and deployment models are

presented. Finally, existing attempts to design and implement IaaS cloud manage-

ment systems are reviewed.

2.3.1 What is Cloud Computing?

Cloud Computing is a new pattern of information service provision which is raised

by Google and IBM, and advocated by other IT giants. The concept means provid-

ing users who submit requests with software and information services on demand
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from computing resources that are heterogeneous and autonomous, which are re-

garded as a whole from the external. The existence of cloud computing is based

on the development and use of Internet computer technology. It is an abstraction

of the various infrastructure that contains the internet. Cloud computing is very

essential, which allows on demand access to remote resources. Cloud computing

delivers infrastructure, platform, and software (applications) as services that are

made available to consumers in a pay-as-you-go model.

In industry these services are referred to as Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS) respectively. Fig-

ure 2.5 shows the architecture of the cloud computing. Cloud computing system

scales applications by effective use of resources and by optimizing concurrency. The

cloud computing enabled IT companies to reduce their spending on equipment and

software. This especially thanks to innovative ideas for new application services.

Cloud computing has allowed IT company to release the maintenance and pur-

chase of equipment and software. Thus they can focus more on management and

creation of business values for their application services [Goldberg 1989]. Some

of Cloud based application services include storage, web hosting, content delivery,

and real time instrumented data processing. Each of these application types has

different characteristic, mainly configuration, and deployment requirements. Quan-

tifying the performance of provisioning (scheduling and allocation) policies in a real

Cloud computing environment (Amazon EC2 [Armbrust 2010], Microsoft Azure

[MicrosoftAzure 2013], Google App Engine [GoogleAppEngine 2013]) for different

application models.

The description of the applications in the cloud computing enables those are ex-

tended to be accessible through the Internet.These cloud applications are running

or are stored in large data centers and powerful servers that host Web applica-

tions and Web services.A cloud application can be accessed via internet with a

suitable Internet connection and a standard browser. Three elements compose the

traditional computational model : computational power (processors and memory),

storage, and software (services). The overall goal of Cloud computing is to allow

applications to utilize these elements. The cloud can be classified based on their
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use. The elements of a cloud are distributed among different nodes. We can classify

the Cloud computing systems as:

• Computation: dicates a system that has a large amount of distributed pro-

cessors.

• Data: therefore it may be data warehouses

• Service: refers to systems that provide services which can be an aggregate of

multiple services

The primary goal of cloud computing is to reduce the costs of infrastructures man-

agement [Zhang 2010]. Many cloud computing definition have been proposed over

the past years [Vaquero 2008]. However, as of today still no standard definition

exists. In this work we rely on the definition presented in [Mell 2011], where Peter

Mell and Tim Grance define cloud computing as: a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources that can be configurable and rapidly provisioned. This model must be

released easily without the intervention of a provideur with little effort.

A comprehensive definition is provided by the National Institute of Standards

and Technology (NIST) [Mell 2011], which we will follow throughout this thesis.

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable com-puting resources (e.g., networks,

servers, stor-age, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider inter-action.

2.3.2 Characteristics

Cloud Computing model is distinguished by the following five essential character-

istics.

• On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service’s provider.
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• Broad network access. Resources are available at any time and anywhere on

the network via standard mechanisms with light and heterogeneous platforms

(eg, mobile phones, laptops and PDAs).

• Resource pooling. Regrouping of IT resources of providers to serve multiple

clients. Customers may purchase multiple IT resources that can be physical

or virtual;

• Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in

some cases automatically;

• Measured Service. resource use is automatic and mostly it is optimized.

Measurement or monitoring of the provision of services is done by the cloud

provider.

2.3.3 Cloud Computing Services

Cloud computing models can be mapped with layers of business value pyramid as

shown in below diagram:

• Cloud Software as a Service (SaaS). In SaaS, an application is hosted by

a service provider and then accessed via the World Wide Web by a client. An

easy way to think of SaaS is the web-based email service offered by such com-

panies as Microsoft (Hotmail), Google (Gmail), and Yahoo!(Yahoo Mail).Each

messaging service has basic criteria: the provider (Microsoft, Yahoo, etc.)

hosts all the programs and data in a central location.

– Line of business services. These business solutions available for busi-

nesses. To purchase must go through a subscription service.

– Customer-oriented services In category we can have webmail services,

online gaming and consumer banking, among others.

To put them in a SaaS system, the technique used is virtualization. With the

the growth of virtualization it is easier for independent software vendors (ISVs)

to adopt SaaS. The growing popularity of some SaaS vendors using Amazon’s
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Figure 2.5: Cloud computing : layers of business value pyramid

EC2 cloud platform and the overall popularity of virtualized platforms help

with the development of SaaS.

• Cloud Platform as a Service (PaaS). The consumer has the ability to

deploy applications created , its use programming languages. It does not need

to manage or control the cloud infrastructure but has control over the deployed

applications and possibly configure the application hosting environment.

• Cloud Infrastructure as a Service (IaaS). Also known ass Everything as

a Service. In this scenario, the client is using the cloud provider’s machines,

but mostly a virtualized server executes its software. In this domain the most

widespread is Amazon Elastic Compute Cloud (EC2).

• Software plus Services. This is the strengthening of the typical SaaS. This

service is used by Microsoft. The on-premise software requires you to reach

out to the cloud for additional services.
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2.3.4 Deployment Models

• Private cloud. In this case the cloud infrastructure is dedicated to an or-

ganization who can run or by a third party and may exist on premise or off

premise.

• Community cloud. The cloud infrastructure is shared by several organiza-

tions and supports a specific community that has shared concerns

• Public cloud. The cloud infrastructure is made available to the general

public or a large industry group and is owned by an organization selling cloud

services.

• Hybrid cloud. The cloud infrastructure is a composition of two or more

clouds (private, community, or public)

2.4 Scheduling in the Grid/Cloud

Scheduling is a decision-making process that is used on regular basis in many man-

ufacturing and services industries. It deals with the allocation of resources to tasks

over given time periods and its goal is to optimize one more objectives. The re-

sources may be processing units in a computing environment. The tasks may be

executions of computer programs. Each task may have a certain priority level, an

earliest possible starting time and due date. The goal of a scheduler is to find ways

to appropriately assign tasks to limited resources that optimize one or more objec-

tives. The objectives can also take many different forms. One objective may be the

minimization of the execution time of tasks and another may be minnimizaation fo

the energy consumption.

These are solutions to planning center given that the batch starts depending

on available resources. A set of rules is defined with route optimization to reduce

travel time and mileage between jobs.

Start times of the day offers many advantages , and a process must take into

account all the dynamics of the business day to day . In environments with mod-

ern facilities , it is important to consider the performance parameters such as the
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number of calls engineers engineers can émetttre day. As customers become in-

creasingly demanding in imposing stricter sanctions cumulative ALS organizations

successful services closely scrutinize their productivity and operational costs. They

use advanced analytics and business models of historical data and can use a more

strategic approach to their activities and ensure they can meet the demand for

efficient service , the allocation of revenue targets and profitability to drive the

process.

Application submitted in the cloud are divided into several tasks. When the

parallel traitement is adopted in the execution of these tasks, we must consider

the following questions: 1) how to allocate resources to tasks, 2) in what or-

der the cloud should perform the tasks, and 3) how to plan overhead when vir-

tual machines prepare, terminate or change jobs. Resource allocation and task

scheduling can solve these three problems. Resource allocation and task scheduling

[Cantú-Paz 1998] [Jiang 2007][Sharma 2010] [Shenai 2012] [Huang 2013a]. Huang

et al. in [Huang 2013a], proposes a aurvey on resource allocation policy and job

scheduling algorithms of cloud computing. However, the autonomic feature within

clouds [Rahman 2011][Guerout 2013][Serban 2013] and the execution of VM require

different algorithms for resource allocations and task scheduling in the IaaS cloud

computing. A major objective of this thesis is the implementation of scheduling

algorithms for reducing energy consumed in data centers.

This section introduces scheduling in the Grid/Cloud. First, the basic princi-

ples behind scheduling are defined and give the objective. Afterwards, scheduling

phases market mechanism properties and scheduling problem are presented. Finally,

scheduling approaches in the Grid/Cloud are reviewed.

2.4.1 The Grid/Cloud Scheduling Phases

In this subsection, we introduce the Grid/Cloud scheduling logical architecture as

shown in Figure 2.6.

Planning grid has three main phases : (i)resource discovery, which generates

a set of potential resources collecting information on resources, (ii) the selection

of a better set, and (iii) perform the work, which includes file used and cleaning.
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Figure 2.6: Grid/Cloud scheduling logical architecture

These phases, and the steps that make them up, are shown in Figure 2.7. We note

that there is no planner of the current grid that implements all the stages of this

architecture.

Figure 2.7: Three-Phase Architecture for Grid Scheduling
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2.4.1.1 Phase 1 : Resource Discovery

To a given user, the first stage of any scheduling interaction is the discovery of

the available resources. During this phase a list of resources is selected . The

Phase 1 begins by an empty list of resources; at the end of this phase, the potential

resources selected is the list that has the minimum feasibility requirements. This

phase is composed of three steps: authorization filtering, job requirement definition,

and filtering to meet the minimal task requirements.

• Step 1: Authorization Filtering. To properly select all possible adequate

resources , the user must be able to specify the requirements of the smallest

task. The set of possible task requirements can include static details such

as the operating system or hardware, or the specific architecture as well as

dynamic details such as a minimum RAM requirement, connectivity, or space.

The first step of resource discovery in job scheduling is to determine the set

of resources that exist. At the end of this step the user will have a list of

machines or resources to which he or she has access.

• Step 2: Application Requirement Definition. To make a good selection of a

set of feasible resources, the user is to be able to specify the minimum task

requirements. The set of possible job requirements can be be very wide and

varies considerably between task. It may include static details (the operating

system or hardware for which a binary of the code is available, or the specific

architecture for which the code is best suited) as well as dynamic details (for

example, a minimum RAM requirement, connectivity needed, storage space

needed). .

• Step 3: Minimal Requirement Filtering. Given a set of resources to which

a user has access and at least a small set of job requirements, the third step

in the resource discovery phase is to filter out the resources that do not meet

the minimum task requirements. At the end of this step, the user acting as a

Grid/Cloud scheduler will have a reduced set of resources to explore.

Current Grid Information Services are set up to contain both static and dy-
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namic data. Many of them cached data with a lifetime associated that al-

lows faster response time of long-term data , including information on basic

resources such as operating system software available and hardware configu-

ration. Since resources are distributed and getting data to make scheduling

decisions can be slow, this step uses basic, mostly static, data to evaluate

whether a resource meets some basic requirements. This is similar to the

discovery stage in a monitoring and discovery service.

2.4.1.2 Phase 2 : System Selection

All possible resources meeting the minimum requirements of the task, those on

which to schedule the task were selected. This selection is usually done in two

stages: the acquisition of knowledge and making a decision. these two steps will be

studied separately, but they are intrinsically linked, the decision process depending

on the information available.

• Step 4: Dynamic Information Gathering. In order to make the best task

scheduling in Grid/Cloud computing environment, detailed dynamic infor-

mation about the available resources is needed. Since this information may

vary with respect to the application being scheduled and the resources being

examined, no single solution will work in all, or even most, settings. The

dynamic information gathering step has two components: what information

is available and how the user can get access to it.

• Step 5: System Selection. Detailed information gathered in step 4 to enable

this step to determine which resource (or a set of resources) to use. Maui

[Scheduler 2013] is an open-source job scheduler for use on clusters and su-

percomputers. It submits a full job description to each of the local schedulers,

each of which individually returns feasible time ranges, including estimated

execution times, cost, and resources used. It improves the manageability and

efficiency of machines ranging from clusters of a few processors. Adaptive’s

Moab HPC Suite [Moab 2012] is a descendant of the Maui scheduler. The

Moab is an intelligent cloud management end-to-end platform.
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2.4.1.3 Phase 3: Job Execution

The third phase of Grid scheduling concerns running a job. Thus a number of mea-

sures must be taken, some of which have been defined uniformly between resources.

• Step 6: Advance Reservation (optional). To best use a given system, some

or all of the resources can be reserved in advance . Advance booking can be

easy or hard to do and can be done with mechanisms or human resources.

Moreover , reservations may or may not expire with or without costs . A

question having advance bookings are most common is the need for lower-

level resource to support services based on indigenous resources .

• Step 7: Job Submission. Once resources are chosen, the application can be

submitted to the resources.

• Step 8 : Preparation Tasks. With this preparation stage which may contain

setup, claiming a reservation, or other actions it is necessary to prepare the

selected resource to run the application.

• Step 9: Monitoring Progress. Depending on the service and its running time,

users may monitor the progress of their services.

• Step 10: Job Completion. The user must be notified at the end of the task. In

many cases, the submission scripts for parallel machines include a parameter

notification e-mail. Due to the fault tolerance, however, this notification can

be surprisingly difficult. Furthermore, with so many interacting systems, one

can easily imagine situations in which a state of completion can not be reached.

Much more work is needed.

• Step 11: Cleanup Tasks. The user may need to retrieve the results after a

job is done from this resource. They can then make the data analysis results,

delete the temporary settings, and so on. One of the current systems that

staging (step 8) also manages the cleaning. Condor also supports a variation

of this stage, in which it runs an extra process before and after the application

is run to do staging and clean-up.
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2.4.2 Integration of the Grid Computing environment and a job

based scheduling scheme

A job scheduling scheme which is mostly utilized in a Grid Computing environment

is summarized in figure 2.8. This scheme integrates all of the three phases of Grid

scheduling we have just seen. Requests for resource allocations are made between

the Application Layer and the Collective Layer. The Application layer contain

normally a task manager which is given the responsibility of finding the available

resources. Requests are sent by the task manager to manager calendar which is

present in the collective layer just to process these applications . The program

manager then looks in a central directory to check the available resources. Which

corresponds to the phase 1 view previously (Resource Discovery). Between collective

layer and the resource manager program executes various scheduling algorithms

based and identifies best available resources that yield the most effective results.

This part of the scheme may match the phase 2 (System Selection). The rest of the

scheme corresponds to the phase 3. Between the resource layer and the connecting

layer there is often a prediction mechanism which measures the performance of the

system, and based on the current output of the collected results . These results

are very important. They are often used to estimate the rate of tasks completion.

Various sorts of data managers and tools are used to measure the performance

of connectivity between the layer and the fabric layer . These tools measuring

system and application information use sensors of various kind. Thus, the presence

of various tools or managers present at different levels of treatment (so that once

the problem is entered into the system , the problem would logically pass through

a series of transactions) imply queues to reach a final result. Without a queue

based system, there is always a possibility that the available resources are not used

efficiently.

2.4.3 Scheduling Approaches in the Grid/Cloud

Task scheduling techniques in data centers are studied in great detail with the aim

of making use of these systems efficiently and especially in order to reduce their
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Figure 2.8: Integration Of The Grid Computing Environment And A Job Based
Scheduling Scheme

energy consumption. Task scheduling algorithms are typically classified into two

subcategories: static scheduling algorithms and dynamic scheduling algorithms. In

static task scheduling algorithms, the task assignment to resources is determined

before applications are executed. Information about task execution cost and com-

munication time is supposed to be known at compilation time. In [Wang 2010] the

task graph clustering technique is defined as an effective static scheduling heuristic

used for scheduling parallel tasks. In a task graph, the process of mapping task

graph nodes onto marked clusters is called clustering. One processor executes all

tasks of the same cluster. In traditional task scheduling heuristics, the process of

clustering tasks is an optimization of reducing the makespan of the scheduled graph.

A task is always running on the resource to which it is assigned. Dynamic

task scheduling algorithms normally schedule tasks to resources in the runtime

to achieving load balance among processor elements (PEs).They are based on the

redistribution. List scheduling algorithm is the most popular algorithm in the static

scheduling [Mtibaa 2007]. List based scheduling algorithms assign priorities to tasks

and sort tasks into a list ordered in decreasing priority. Then tasks are scheduled

based on the priorities.

There is important to note that scheduling strategies deployed in clusters have
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a large impact on overall system performance. This is due to the fact that many

parallel applications run in clusters require intensive data processing and data

communication. Basically, parallel scheduling strategies can be classified to three

primary categories, called priority-based scheduling, cluster-based scheduling, and

duplication-based scheduling, respectively. Priority-based scheduling involves the

assignment of priorities to tasks and then maps those tasks to processors based

upon assigned priorities [Sih 1993].

Duplication scheduling is more efficient than other scheduling algorithms in most

cases, especially when communication time is greater than the execution time of

parallel applications. With the duplication of many tasks and the execution of more

than once by multiple processors, the performance is improve but energy consump-

tion increases. Lai et al. [Lai 2008] proposed a duplication-based task scheduling

algorithm for distributed heterogeneous computing (DHC) systems, which improve

system utilization and avoid redundant resource consumption, resulting in better

schedules. Authors proposed a heuristic strategy called the Dominant Predecessor

Duplication (DPD) scheduling algorithm, which allows for system heterogeneities

and communication bandwidth to exploit the potential of parallel processing. Zong

et al. [Zong 2011] proposed two energy-efficient duplication-based scheduling algo-

rithms Energy-Aware Duplication (EAD) scheduling and Performance-Energy Bal-

anced Duplication (PEBD) scheduling. These algorithms strive to balance schedule

lengths and energy savings by judiciously replicating predecessors of a task if the

duplication can aid in performance without degrading energy efficiency.

In real-time events, dynamic scheduling is of great importance for the successful

implementation of real-world scheduling systems. In dynamic scheduling job release

times are not fixed at a single point in time, i.e. jobs arrive to the system at

different times. In dynamic scheduling problems, one considers scheduling one

customer arrival only, assuming that there are a number of scheduled customers

already. Real world scheduling problems are usually of dynamic nature. From the

point of view of combinatorial optimisation the question of how to sequence and

schedule jobs in a dynamic environment looks rather complex and is known to be

NP-hard to almost every state. Chryssolouris et al. [Chryssolouris 2001] proposed a
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dynamic scheduling of manufacturing job shops using genetic algorithms. Dynamic

scheduling algorithm have higher performance than static algorithm but has a lot

of overhead compare to it.

2.4.3.1 Allocation process of a scheduler

The allocation process of a scheduler consists of two parts, the selection of the

machine and the scheduling over time.

• Selection-Strategies.

There are various scheduling techniques. The Greedy heuristic is literally a

combination of the Min-min and Max-min heuristics. Results show that it out-

performs both and uses the better solution [Armstrong 1998] [Freund 1998].

Min-Min and Max-Min are discussed first.

– Greedy Algorithm. Greedy Algorithm [Hazewinkel 2001] works by

selecting at every step the best choice available at any moment; it never

reconsiders this decision, whatever situation may arise later. Greedy

algorithms are used to solve optimization problems. Many heuristics

are greedy algorithms and practical experience shows that they usually

perform quite well [Perea 2011].

– Min-Min Algorithm. Min-Min begins with a set of unassigned tasks.

First, it computes minimum completion time for all tasks on all resources.

Then among these minimum times the minimum value is selected which

is the minimum time among all the tasks on any resources. Then that

task is scheduled on the resource on which it takes the minimum time and

the available time of that resource is updated for all the other tasks. It is

updated in this manner; suppose a task T is assigned to a machine and

it takes 20 seconds on the assigned machine (AM), then the execution

times of all the other tasks on AM will be increased by 20 seconds. After

this the assigned task (AT) is not considered and the same process is

repeated until all the tasks are assigned resources. This approach was

proposed by Maheswaran et al. [Maheswaran 1999].
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– Max-Min Algorithm. In Max-Min, after having discovered the com-

pletion time, the minimum execution times are discovered for each and

every task. Then among the set of minimum times the maximum value

is selected which is the maximum time among all the tasks on any re-

sources. Then that task is scheduled on the resource on which it takes

the minimum time and the available time of that resource is updated for

all the other tasks. The updating is done in the same manner as for the

Min-Min. All the tasks are assigned resources by this procedure. The

approach is proposed in [Maheswaran 1999] and [Mandal 2005].

• Scheduling Algorithms.

Most common algorithms in scheduling are based on list-scheduling. In the

following some variants are presented :

– First-Come-First-Serve (FCFS)[Denning 1965] [Schwiegelshohn 1998] :

The scheduler starts the jobs in the order of their submission. If not

enough resources are currently available, the scheduler waits until the

job can be started. The other jobs in the submission queue are stalled.

This strategy is known to be inefficient for many workloads as wide

jobs waiting for execution can result in unnecessary idle time of some

resources;

– Random [Seiden 2000] : The next job to be scheduled is randomly se-

lected among all jobs that are submitted therefore not yet started then

are in wait state, therefore the schedule is nondeterministic. No job

is preferred, but jobs submitted earlier have a higher probability to be

started before a given time instant;

– Backfill[Lifka 1995] : This is a version of FCFS scheduling whose its rule

is to try to prevent the unnecessary idle time caused by wide jobs. Two

common variants are EASY- and conservative-backfilling [Feitelson 1995].

In case that a wide job is waiting for execution other jobs can be started

under the premise that the wide job is not delayed. Note, that the



2.4. Scheduling in the Grid/Cloud 43

performance of this algorithm relies on a sufficient backlog. Most com-

monly used is first come first serve (FCFS) combined with backfilling

[Keller 2000][Skovira 1996][Mu’alem 2001], as on average a good perfor-

mance for the utilization and response time is achieved. However, with

certain job characteristics other scheduling policies might be superior to

FCFS. For example, for mostly long running jobs, longest job first (LJF)

is beneficial, whilst shortest job first (SJF) is used with mostly short jobs

[Feitelson 1994].

– round robin scheduling [Demers 1989]. In the round robin schedul-

ing, processes are dispatched in a FIFO manner but are given a limited

amount of CPU time called a time-slice or a quantum. If a process does

not complete before its CPU-time expires, the CPU is preempted and

given to the next process waiting in a queue. The preempted process is

then placed at the back of the ready list.

2.4.3.2 Local scheduling vs. Global scheduling

We can note a distinction between the two algorithms at the highest level. The

local scheduling subjet determines how the processes resident on a single CPU is

reallocated and executed; a global scheduling policy uses information about the sys-

tem to allocate processes but also to multiple processors to optimize a system-wide

performance objective. Obviously, Grid scheduling falls into the global scheduling

branch which shows its popularity.

2.4.3.3 Static Scheduling Algorithmn vs Dynamic scheduling algorithm

• Static scheduling Algorithms. In the case of static scheduling, information

regarding all resources in the Grid as well as all the tasks in an application

is assumed to be available by the time the application is scheduled. Every

task comprising the job is assigned once to a resource. Thus, the placement

of an application is static. The following benefit were noted : estimate of

the cost of the computation can be made in advance of the actual execu-
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tion, information regarding all resources in the Grid as well as all the tasks

in an application is assumed to be available by the time the application is

scheduled, the assignment of tasks is fixed a priori, and estimating the cost

of jobs is also simplified, the static model allows a global view of tasks and

costs. A major benefit of the static model is that it is easier to program from

a scheduler’s point of view. The following disadvantages were noted. Cost

estimate based on static information is not adaptive to situations such as one

of the nodes selected to perform computation fails, becomes isolated from the

system due to network failure. Heavily loaded with jobs that its response

time becomes longer than expected. Unfortunately, these situations are quite

possible and beyond the capability of a traditional scheduler running static

scheduling policies. To address this problem, some important mechanisms

such as rescheduling mechanism are introduced at the cost of overhead for

task migration to reduce energy consumption. Another side-effect of intro-

ducing these measures is that the gap between static scheduling and dynamic

scheduling becomes less important. In the decentralized approach presented

in chapter 3 we introduced a stage of rescheduling.

• Dynamic Scheduling Algorithm (On line Scheduling Algorithms. ) In the

case of dynamic scheduling, the main idea is to perform task allocation dy-

namically. This is useful when execution time can not be found, as well as

direction of branches and number of iterations in a loop as in the case where

jobs arrive in a real-time mode [Yu 2008].

2.4.3.4 Approximate vs. Heuristic

Another class of algorithms is approximate algorithm . These algorithms use the

technique used is model algebra. However, instead of searching the entire solution

space for an optimal solution, it stops when it finds a solution that is qualified suf-

ficiently "Good". In the case where a metric is available for evaluating a solution,

this technique can be used to decrease the time taken to find an acceptable sched-

ule.The factors that determine whether this approach can be continued include: the
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availability of a function that can evaluate a solution, the time required to evaluate

a solution, the ability to judge the value of an optimal solution according to some

metric and the availability of a mechanism for intelligent pruning of the solution

space.

In distributed system, traditional metrics are usually used for task scheduling.

These metrics are especially makespan, but also the dynamic nature of distributed

system will violate the above conditions. Approximate algorithms in Grid schedul-

ing are based on a proposed in [Fujimoto 2003] objective function named Total

Processor Cycle Consumption. An important branch in the suboptimal category

currently widely used is called heuristic. It represents the class of algorithms which

make the most realistic assumptions about a priori knowledge concerning process

and system loading characteristics. It also represents the solutions to the scheduling

problem where it is difficult to give an optimal answers but only requires the most

reasonable amount of cost. Most of the algorithms to be discussed in the following

are heuristics.

2.4.3.5 Distributed vs. Centralized

In dynamic scheduling scenarios, the responsibility for making global scheduling

decisions may lie with one centralized scheduler, or be shared by multiple distributed

schedulers. In a computational Grid and in Cloud, there might be many applications

submitted or required to be rescheduled simultaneously. The centralized strategy

has the advantage of ease of implementation, but suffers from the lack of scalability,

fault tolerance and the possibility of becoming a performance bottleneck. Sabin et

al [Sabin 2003] propose a centralized metasheduler which uses backfill to schedule

parallel jobs in multiple heterogeneous sites. Similarly, Arora et al [Arora 2002]

present a decentralized, dynamic and sender-initiated scheduling. Authors use the

technique of load balancing algorithm for the Grid environment. A feature of this

algorithm is that it uses a smart search strategy to find partner nodes to which

tasks can migrate. It also overlaps this decision making process with the actual

execution of ready jobs, thereby saving precious processor cycles.
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2.4.3.6 Cooperative vs. Non-cooperative

Given the increasing data center scales, such systems are faced with challenges

in terms of scalability, autonomy, and energy-efficiency. In large-scale Cloud, the

centralized approach is clearly unfeasible. Firstly, centralized scheduling [Yu 2009]

requires accurate, centralized information about the state of the whole system. Sec-

ondly, sites forming the grid maintain some level of autonomy, yet classic algorithms

implicitly assume a complete control over individual resources. Thus, many of the

existing attempts to design and implement cloud systems are still based on central-

ized architectures, have limited autonomy, and lack of energy saving mechanisms.

In contrast, decentralized scheduler [Ranjan 2008] negates the limitations of

centralized structures with respect to fault-tolerance, scalability, autonomy, and

most importantly the adequacy for the Cloud computing environment. Jobs are

submitted locally, but they can be migrated to another cluster, if the local cluster

is overloaded. The possibilities of migration are, however, limited, so that migrated

jobs do not overload the host system. A decentralized scheduling approach assumes

that each entity is autonomous and has its own control that derives its schedul-

ing decision based on its policies. However, if the decisions are taken by several

independent units, it might be the case that these units aim at optimizing their

own objectives rather than the performance of the system as a whole. Such situa-

tions call for models and techniques that take the strategic behavior of individual

units into account, and simultaneously keep an eye on the global performance of

the system. In most cases, self-interested entities have to cooperate to achieve their

respective objectives, but any cooperation must be self-enforcing and not enforced

by binding agreements through third parties.

In the case of the adoption of a distributed scheduling algorithm, another prob-

lem that should be considered is if the nodes involved in job scheduling are working

cooperatively or not. In the non-cooperative case, individual selfish schedulers act

alone as autonomous entities and arrive at decisions regarding their own optimum

objects independent of the effects of the decision on the rest of system. Good ex-

amples of such schedulers in the Grid and Cloud are application-level schedulers
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which are closely associated with particular applications and optimize their private

individual objectives. In the cooperative case, each scheduler has the responsibility

to carry out its own portion of the scheduling task, but all schedulers are work-

ing toward a common system-wide goal. Each scheduler’s local policy is concerned

with making decisions in concert with the other schedulers in order to achieve some

global goal, instead of making decisions which will only affect local performance or

the performance of a particular job. As already define in section 2.2 a cooperative

scheduler can be seen as a system including a set of consumers that be applications

or tasks, and a set of resources as energy and processing power. To make the most

of all available resources, a proper distribution of tasks among the devices such as

to optimize the energy consumption, represents a key issue to be addressed.

The importance but also the effectiveness of this type of algorithm is more obvi-

ous, especially since they allow avoided some selfish behavior in distributed systems.

Those behaviors that do not contribute to energy efficiency but good system per-

formance. Our decentralized approach defined in chapter 3 adopts cooperation.

2.4.3.7 Task Dependency of an Application

In data centers the task execution information is mainly composed by a task ex-

ecution cost and communication cost. It can be obtained by some profiling tools

and compiler aid. The task graph clustering technique is considered as an effective

static scheduling heuristic for scheduling parallel tasks. Given a task graph, clus-

tering is the process of mapping task graph nodes onto labeled clusters. All tasks

of the same cluster are executed in the same processor. In traditional task schedul-

ing heuristics, the process of clustering tasks is an optimization of reducing the

makespan of the scheduled graph. When the relations among tasks in a distributed

system application are considered, a common dichotomy used is dependency vs.

independency. In the case of dependency there are precedence orders existing in

tasks. In this situation a task cannot start until all its parent are done. Dependency

has consequences to the design of scheduling algorithms;
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• Independent Task Scheduling. As a set of independent tasks arrive,

a common strategy should be assigned for them according to the resources

load in order to achieve high system throughput from a system point of view.

Furthermore from the point of view of applications, some static heuristic

algorithms based on execution cost estimate can be applied.

Min-min and Max-min algorithms are simple and can be easily amended to

adapt to different scenarios. Wu, Shu and Zhang [Wu 2000] gave a Segmented

Min-min algorithm, in which tasks are first ordered by the expected comple-

tion time, then the ordered sequence is segmented, and finally Min-min is

applied to all these segments. The segment improves the performance of

typical Min-min when the lengths of the tasks are dramatically different by

giving a chance to longer tasks to be executed earlier than in the case where

the typical Min-min is adopted.

• Dependent Task Scheduling. Directed acyclic graph (DAG) often

applies when tasks composing a job have precedence orders. This model

is popular. In this case a node represents a task and a directed edge de-

notes the precedence orders between its two vertices. In some cases, weights

can be added to nodes and edges to express computational costs and com-

municating costs respectively. As distributed system infrastructures grows

and become more and more mature and powerful, support for complicated

workflow applications, which can be usually modeled by DAGs, are provided.

We can find such tools like Condor DAGMan [Condor2013 2013] and CoG

[Von Laszewski 2000].

The study in this thesis focuses on the scheduling of independent tasks

2.4.3.8 Non-traditional Approaches for Grid Task Scheduling

The distributed system as Grid is a system composed of a large number of au-

tonomous resource providers and consumers, which are running concurrently, chang-

ing dynamically, interacting with each other but self-ruling. In nature and human

society, there are some systems having the similar characteristics. Therefore many
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approaches, such as the Grid Economy [Buyya 2005] and other heuristics inspired

by natural phenomena, were proposed to address the challenges of Grid computing

and Cloud. Ideas behind these approaches are not originally applied to the schedul-

ing problem and mapping from the problem spaces in which they are initially used

to Grid scheduling problems is usually required.

2.4.3.9 Grid Economic Model

The use of economic methods in Grid scheduling involves interacting processes be-

tween resource providers and users, analogous to various market behaviors, such as

bargain, bid, auction and so on. Buyya et al [Buyya 2002a] discuss some economic

models that can be applied to the Grid world, including the Commodity Market

Model, Tender/contract-net Model, and Auction Model. As economic models are

introduced into Grid computing, new research opportunities arise. Because the

economic cost and profit are considered by Grid users and resource providers re-

spectively, new objective functions and scheduling algorithms optimizing them are

proposed. Economic methods for scheduling problems are very interesting because

of their successes in our daily lives. Some models can only support relatively simple

Grid scheduling problems such as independent tasks. For more complex applica-

tions, such as those consisting of dependent tasks and requiring cross-site cooper-

ation, more sophisticated economic models might be needed. The idea of reward

and pay will be included in one of our contribution presented in the following.

2.4.3.10 Scheduling Methods Inspired by Nature’s Laws

As scheduling is usually a process to find optimal solutions. That’s why several

analogies from natural phenomena have been introduced to form good heuristics,

which have proven to be highly successful. Some of the common characteristics

of Nature’s heuristics are the close resemblance to a phenomenon existing in na-

ture, namely, non-determinism, the implicit presence of a parallel structure and

adaptability.

• Genetic Algorithm (GA) GA is an evolutionary technique used in many re-
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searches. The general procedure of GA search is defined in [Braun 2001].

For its simplicity, GA is popular Nature’s heuristic used in algorithms for

optimization problems;

• Simulated Annealing (SA) SA is a technique used in physical research on the

physical process of annealing. The simulation of annealing process which is

the thermal process, can produce low-energy crystalline states of a solid. It

is simulated. A SA algorithm is implemented in [Braun 2001];

• Tabu Search (TS) TS is a technique used in heuristics to overcome local

optimality. It has become an established optimization approach that is used in

many searches in many fields. In [Braun 2001], a TS is implemented beginning

with a random mapping as the initial solution, generated from a uniform

distribution;

• Combined Heuristics GA can be combined with SA and TS to create combi-

national heuristics. These Nature’s heuristics were only relatively introduced

into the scheduling area and more work needs to be done to fit them in a Grid

context.

2.4.3.11 Scheduling with virtual machines

Virtualization of data centers resources is a successful direction which aims to solve

many current problems related not only to Grid scheduling. Today, various users’

requirements can be more or less fulfilled by introducing different queues, job pri-

orities, advanced reservations and so on. However, without the ability to preempt

running jobs a scheduling system can hardly guarantee immediate execution of

interactive or high priority jobs. While certain scheduling systems may provide

support for job preemption, they are limited to the provided support of underlying

operating systems. Job preemption is usually achieved by completely suspending

the job or reducing its priority. Even in such situation still the high priority job

may be slowed down by a preempted job. For doing so swapping is one of solutions.

Condor support job preemption due to recompilation of applications, which substi-

tutes all I/O system calls with variants that allows to performing the preemption
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safely. Complete suspend might also have serious impacts on parallel jobs or pro-

cesses communicating over the network. With virtual machine technology, which

provides strong isolation of processes running within different virtual machines, bet-

ter preemption without unpredictable performance losses can be achieved. Many

scheduling algorithms of the system mainly viewpoint, are classified in a hierarchi-

cal taxonomy, such as dynamic or static, distributed or centralized. Currently there

are many other very important aspects forming a scheduling algorithm which are

not yet covered by this method.

Through our survey on current scheduling algorithms working in the distributed

system scenario, we can find that heterogeneity, dynamism, computation and data

separation but mainly energy consumption in data centers are the primary chal-

lenges concerned by current research on this topic.

2.4.4 Cloud computing Scheduling

The previous discussion highlights the need to develop a comprehensive approach

for job schedulings in cloud. Since cost of each task in cloud resources is different

with one another, scheduling of user tasks in cloud is not the same as in traditional

scheduling methods.

One of the challenging scheduling problems in Cloud data centers which we must

pay attention, is to consider the allocation and migration of (VMs) with full life cycle

constraints, which is often neglected [Kim 2011]. Beloglazov et al. [Beloglazov 2012]

considered off-line allocation of VMs by modified best-fit bin packing heuristics.

Kim et al. [Kim 2011] modeled a real-time service as a real-time VM request, and

used dynamic voltage frequency scaling schemes. In [Tian 2013] autors consider on-

line energy-efficient scheduling of real-time virtual machines (VMs) for Cloud data

centers. They associate to each request a starttime, a end-time, a processing time

and demand for a Physical Machine (PM) capacity. Their goal was to schedule all

of the requests non-preemptively in their start-timeend-time windows, subject to

PM capacity constraints, such that total busy time of all used PMs is minimized

(called MinTBT-ON for abbreviation). In [Emeneker 2007], the authors proposed

an image caching mechanism to reduce the overhead of loading disk image in vir-
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tual machines. The authors of [Fallenbeck 2006] presented a dynamic approach to

create virtual clusters to deal with the conflict between parallel and serial jobs. In

this approach, it has an automatic adjustment of job load without running time

predictions. A system which can automatically scale its utilization of infrastruc-

ture resources is designed in [Ruth 2006]. Another resource sharing system which

can trade machines in different domains without infringing autonomy of them is

developed in [Ruth 2005]. Studies described above, however, do not consider the

issue of preemptable task scheduling. In [Sotomayor 2009b], a suspend/resume

mechanism is used to improve utilization of physical resource. The overhead of sus-

pending/resume is modeled and scheduled explicitly. The VMs model considered

in [Sotomayor 2009b] is homogeneous, so the scheduling algorithm is not applica-

ble in heterogeneous VMs models. The study presented in [Shivle 2004] focuses

on scheduling in heterogeneous mobile ad hoc grid environments. However the

scheduler algorithms can not be used in cloud computing. Parallel processing in

the cloud system can shorten the execution of jobs. Parallel processing requires

a mechanism to scheduling the executions order as well as resource allocation. To

improve the utilization of resources in clouds Jiayin Li et al. [Li 2010] present a pre-

emptable job scheduling mechanism in cloud system. [Sadhasivam 2009] presents

the implementation of an efficient Quality of Service (QoS) based meta-scheduler

and Backfill strategy based light weight Virtual Machine Scheduler for dispatching

jobs. [Kailasam 2010] proposes three flavors of autonomic cloud-bursting sched-

ulers: 1) greedy scheduler, 2) order preserving scheduler and 3) size-interval based

bandwidth splitting for order preserving scheduler. For the scheduling of data ac-

cess, [Bein 2010] studies the problem of actually allocating the memory of servers in

a data center based on online requests for storage. It presents two algorithms that

basic principle is bin packing problem. And these algorithms are used in serving

online sequence of requests. [Garg 2011] proposes near-optimal scheduling policies

that exploit heterogeneity across multiple data centers for a Cloud provider. It con-

siders a number of energy efficiency factors (such as energy cost, carbon emission

rate, workload, and CPU power efficiency) which change across different data cen-

ters depending on their location, architectural design, and management system. In
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[Sun 2011], a novel virtual machine scheduling algorithm by a clustering mechanism

for maximizing cloud computing system utility is put forward. Theoretical as well

as experimental results conclusively demonstrate that the scheduling algorithm has

high potential as it takes both preference and fairness into account, and maximizes

cloud computing system utility by the clustering mechanism in cloud computing

environments.

In [Huang 2013b], authors introduce a decentralized dynamic scheduling ap-

proach called community aware scheduling algorithm (CASA). The CASA func-

tions as a two phase scheduling decision and contains a collection of sub-algorithms

to facilitate job scheduling across decentralized distributed nodes. The first one,

job submission phase, finds the proper node from the scope of the overall grid

and the second one, the dynamic scheduling phase, aims to iteratively improving

scheduling decisions. CASA great difference when comparing with the aforemen-

tioned approaches is that it aims to an overall performance improvement, rather

than individual hosts performance boosting. The algorithm utilize nodes which

cooperate in the whole system. The authors, by conducting a series of experiments

have shown significant results. First of all, by applying the CASA in a decentral-

ized scheduling setting could lead to the same amount of executed jobs comparing

with the centralized solution. Autors improve job slowdown and waiting times. In

addition, the authors claim that improvements were also noticed on the scheduling

performance including response and waiting time and the messages overhead. The

CASA, in contrast with aforementioned algorithms, is based on contacted nodes’

real time responses. Our decentralized approch is based on this algorithm.

2.5 Energy Management in Cloud

Cloud computing has now become a new business model of computation and storage

resources based on on-demand access to potentially significant amounts of remote

datacenter capabilities. As the field matures together with the nonstop growth of

the Internet and the world’s businesses, it is expected that more Cloud providers

will appear and provide a more diverse selection of different resources and services.
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However, the deployment of datacenters in Clouds uses more and more computers

which need new intallation electric, each year, increasing energy consumption and

negative pressure on the environment. Research conducted by [Bianchini 2004]

shows that running a server which has a power of 300-watt during a year can cost

about $338, and more importantly, can emit as much as 1,300 kg CO2, without

mentioning the cooling equipment. This section introduces Energy Management

in Cloud. First, understanding Power Consumption is studied. Afterwards an

overview about energy is presented. Finally, researchs in energy management in

cloud are given.

2.5.1 Computer Power

In 2009 the US Environmental Protection Agency (EPA) reports that a PC left on

overnight unnecessarily consumes between $25 and $75 of electricity a year. This

gives a huge amount wasted if you multiply that number by the hundreds and

thousands of machines worldwide.

To design efficient strategies for energy savings it is essential to understand the

relationship between power consumption, CPU utilization and the transition delay

between different server’s states . This relationship by measuring power consump-

tion of typical machines in different states is examined.

There is generally three options to conserve power when using a computer which

are shutdown, hibernate or sleep state mode.

• Sleep . The sleep state of the machine is its situational break. When the

machine restarts from this state, the machine finds the same situatution it

had with pausing (with the same applications running)

Sleep mode had different names: (1) First "Suspend" for Window 95 and

Linux; (2) then "Sleep" from Windows Vista, Mac OS and Linux for now.

When a machine is running, it is put on Random-Access Memory (RAM).

When the machine enters in Sleep state, the RAM is placed in state of min-

imum energy allowing it to retain its data (eg application running). Due to

currently recommended energy saving, laptops (when not in use), automat-



2.5. Energy Management in Cloud 55

ically switch to this state when operating on battery power and if the lid is

closed;

• Hibernation. When a computer enters in hibernation state mode all opera-

tional data are saved on the hard disk before turning computer off completely.

When computer returns in the previous state it is restored with all programs

and files open, and unsaved data intact. In standby mode, computer’s state

is saved in RAM; in hibernation mode, computer’s state is saved on the hard

disk. Hibernation can save electrical power. In hibernate state mode, the

hardware of a machine is almost completly powered down in constrat of the

shutdown which is completly. A small amount of power is used to power the

CMOS powered, and prevents the user from entering the BIOS setup upon

resuming the system. A machine which is in hibernated state mode uses less

electrical power than one which is in sleep or suspend mode;

• Shutdown. Stopping off a machine cuts the power of the main components

(such as processors, RAM modules and hard drives) of a computer. However,

some internal components, such as an internal clock, may retain power.

One study performed by [Duy 2010] give results represented in figures 2.9 and 2.10.

In their experimental environment they used :

• Linux machine with AMD Phenom 9500 Quad-Core Processor 2.2GHz,

• A Windows machine with AMD Athlon 64 X2 Dual-Core Processor 5000+

2.6GHz.

• Machines were connected to a System Artware SHW3A watt-hour meter at

the power plug to record power consumption of the whole machines.

In Linux machine, from their results, they assert that the suspend-to-RAM

seems to be the best state, in terms of both power consumption and transition

delay, as it needs only 10 seconds to come to this state from the idle state, and

20 seconds for the opposite direction. Similarly, the standby state consumes less

power than the idle state in Windows machines. It consumes only 3.7W, and takes

as little as 5 and 10 seconds for transition delays.
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Figure 2.9: State transition of the Linux machine.

2.5.2 Data Center Characteristics

In [Brown 2008] authors argue that data centers are not designed for people but

for computers. consequently, data centers generally have no windows and minimal

circulation of fresh air. They are often housed in new construction dedicated for

that or in existing locals that have been renovated.

The size of the areas containing the data center varies with that of the latter.

Large data centers housed in large buildings are becoming more and more, with

advances in technology, common as smaller data centers consolidate. Data center

rooms contains rows of IT equipment racks, network equipment and many others.

To protect all this equipenments, uninterruptible power supply (UPS) unit is used.

Electricity is first supplied to UPS unit before reaching the IT equipment rack.

The server power supply unit (PSU) convert current (AC) to direct current (DC)

the electicity coming out of UPS. The low-voltage DC power supplied from the
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Figure 2.10: State transition of the Windows machine.

UPS is used by the server’s internal components of, such as the central processing

unit (CPU), memory, disk drives, chipset, and fans. The DC voltage serving the

CPU is adjusted by load specific voltage regulators (VRs) before reaching the CPU.

Electricity is also routed to storage devices and network equipment, which facilitate

the storage and transmission of data.

It is very important for the proper function of the data center to reduce con-

siderably the huge amount of heat delivered by the IT equipment and power which

continuously operating. Because of the configuration of buildings which have no

window , computer room air conditioning (CRAC) are often used for cooling. In

most configurations the entire air handling unit (AHU) is situated on the data center

floor and contains fans, filters, and cooling coils and is responsible for conditioning

and distributing air throughout the data center.

Data centers use a huge amount of energy to supply three key components: IT

equipment, cooling, and power delivery. These energy needs can be better under-

stood by examining the electric power needed for typical data center equipment in
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and the energy required for cooling. A lot of research work exist on how to reduce

the energy consumed in data centers. This is one major objective of this thesis.

2.5.3 About energy consumption

Introduced by the Green Grid [Azevedo 2012], Power Usage Effectiveness (PUE) is

a measure of efficiency used usually to better evaluate energy in data centers. It

is defined by this formula : PUE = T otalfacilityenergy
IT equipmentenergy . The total facility energy

concern the energy used solely by the data center mainly everything that supports

the IT equipment including power, cooling, lighting, etc.; while the IT equipment

energy corresponds to the energy consumed by equipment that is used to manage,

process, store, or route data within the compute space. See figure 2.11.

Figure 2.11: Overview of the subcomponents within a typical data center’s facility
and IT equipment

One of the best ways to reduce energy savings in computing is to reduce the

amount of IT equipment. Virtualization is the key to the consolidation which

eliminate a large number of underused physical servers while providing the same
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level of service with a small number of highly used servers.

As was already said in the previous section, there is opportunity in data centers

to reduce heating, ventilation, and air conditioning (HVAC ) energy by employing

row containment strategies to reduce the mixing of cool supply air with hot evacu-

ation air. In-rack cooling solutions offer even greater gains by reducing the volume

of conditioned space from the entire data center to the inside of the racks.

The energy consumption of data centers has been estimated at 61 billion kilowatt-

hours in 2006, about 1.5% of total US consumption. The report estimates this

consumption to 5.8 million average U.S. homes. In the report to US Congress on

server and data center energy efficiency (August 2007), authors think that the real

problem is that data center power consumption is rising faster than overall demand.

In the report to US Congress on server and data center energy efficiency (August

2007 ) says that in 2006, data servers account for nearly 1.5% of total electricity

consumption in the U.S. at a cost of approximately $4.5 billion per year. According

to a study by Pike Research [pikeresearch 2013] "the adoption of cloud computing

will lead to a 38% reduction in worldwide data center energy expenditures by 2020,

compared to a business as usual (BAU) scenario for data center capacity growth,

according to Cloud Computing Energy Efficiency".

A study conducted by Lawrence Berkeley National Laboratory (Berkeley Labi

[Berkeley 2013] with funding from Google indicates that moving common data used

by 86 million U.S. workers to the cloud could can save enough electricity annually

to power Los Angeles for a year. The report worked at three common business

applications that are email, customer relationship management software, and bun-

dled productivity software. The transfer of these applications in a local server to a

centralized cloud services could reduce information technology energy consumption

by up to 87% - about 23 billion kilowatt-hours. This is roughly the amount of

electricity used each year by all the homes, businesses and industry in Los Angeles

A report published this year by DCD Intelligence [dcd 2013][dcd 2014] states

that North American data center energy consumption is currently 11.55GW, an in-

crease of 6.8% compared to 2013. This helped, thanks to a great attention paid to

the management and increased monitoring and the effectiveness of practices, down-
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grade forecast energy consumption energy by 2016 compared to 2013 projections

8% per annum growth from 2014 to 6% a saving of 1 GW by 2016.

2.5.4 Researches on power consumption

In the past few years, people started to realize that the energy consumption is a

critical issue since energy demands of clusters grow, with an increasing number of

data centers. Several strategies for energy saving in heterogeneous clusters have

been proposed and studied. The existing techniques for energy savings in the area

of enterprise power management at a server farm can roughly be divided into two

categories: dynamic voltage/frequency management inside a server and shutting

down servers when not in use. However, several other techniques exist (e.g New

hardware design and Os management). In the former, power savings are gained

by adjusting the operating clock to scale down the supply voltages for the circuits.

Although this approach can provide a significant reduction in power consumption,

it depends on the hardware components’ settings to perform scaling tasks.

2.5.4.1 Dynamic voltage-frequency scaling (DVFS)

Dynamic voltage and frequency scaling (DVFS) had been widely used for power

and energy optimization in embedded system design. There is a large field of

researches on using DVFS in single and multiple processor systems to minimize

energy consumption. Currently, temperature related problems in some chips had

typically been addressed by techniques that lower the average temperature or keep

the temperature under a given threshold in order to reduce energy consumed. Dy-

namic voltage-frequency scaling (DVFS) is an example of such techniques. Dynamic

voltage-frequency scaling is a technology now present in high-performance micro-

processors that its function is to reduce the supply voltage to the CPU consumes

less power. Energy-aware scheduling in multiprocessor systems and grid systems al-

ways concerned researchers as the following overview shows. In [Xian 2007] authors

present an energy-aware algorithm which schedules real-time tasks in multipro-

cessor systems that support a technique used in many system : dynamic voltage
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scaling (DVS). In [AlEnawy 2005] the DVFS capability treats to energy minimiza-

tion for periodic preemptive hard real-time tasks that are scheduled on an identical

multiprocessor platform. AlEnawy and Aydin [AlEnawy 2005] suggest partitioned

scheduling in their work and assume that the tasks are assigned rate-monotonic

priorities. To find a solution to this problem, they proposed an integrated approach

that include rate monotonic scheduling, an admission control test, a partitioning

heuristic and a speed assignment algorithm. These works propose to control the en-

ergy consumption of hardware by adjusting voltage levels. A significant bottleneck

of this method is the performance impact associated with stalling or slowing down

the processor. Srinivasan et al. in [Srinivasan 2004] argue that when the workload

that is going to run on the system is known, voltage/frequency levels, architec-

ture configuration or job allocation can be adjusted at the design stage to avoid

dynamic thermal management as much as possible. With this technique , several

temperature-aware job allocation and task migration techniques have been proposed

(e.g. [Bartolini 2013], [Zhao 2013]) to reduce thermal hot spots and temperature

variations dynamically at low cost.

2.5.4.2 Consolidation

The utilization ratio of data center resource is only 30% [Kliazovich 2012]. So, to

concentrate the workload in a minimum set of the computing resources is very im-

portant for saving energy. In addition, energy waste in VM migration can be a sig-

nificant percentage of total energy consumption in cloud computing [Nagothu 2010].

A number of studies demonstrate that VM migration can cost a big percentage of

energy use, as well as cause extensive runtime [Baliga 2011] and VMs migrations

are considered as zero energy cost. Live migration of VMs allows transferring a VM

between physical nodes without suspension and with a short downtime. However,

live migration has a negative impact on the performance of applications running in

a VM during a migration. Voorsluys et al. have performed an experimental study

to investigate the value of this impact and find a way to model it [Voorsluys 2009].

They found that bad performance and downtime depend on the application be-

havior, i.e.,the number of memory pages the application updates during its exe-
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cution. However, for the class of applications with dynamic workloads, such as

web-applications, the average performance degradation including the downtime can

be estimated as approximately 10% of the CPU utilization. Most of the existing

algorithms are focusing on the resource utilization.

Consolidation is a solution which increases energy efficiency in data centres.

As already mentioned above the key to the consolidation is virtualization which

partitions computational resources and enables the sharing of physical server. Many

services often need only a small fraction of the available computational resources.

Many services often need few computational resources [View 2007] of a data centre

server. However, even when run at a low utilization, servers typically need up to

70% of their maximum power consumption [Hintemann 2010].

2.5.4.3 Other techniques

Other techniques such as energy-efficient Cloud infrastructure, new hardware design

and Os management can be used. In [ORGERIE 2010], Orgerie et al study the

impact of virtual machines aggregation in terms of energy consumption. As part of

the migration of virtual machines within the infrastructure, the authors presented

several load balancing strategies. Their research deals with the support of energy-

efficient frameworks dedicated to Cloud architecture. They present the design of a

new original energy-efficient Cloud infrastructure called Green Open Cloud (GOC).

The GOC architecture supports swiching OFF unsused computing, and predicting

computing resources usage in order to switch ON the nodes which are required iin

a near future. They proposed software frameworks able to reduce the energy usage

of Cloud infrastructure.

In [Chase 2001], Chase et al. illustrated a method of determining the aggregate

system load and the minimal set of servers that can process the load. A similar idea

in cluster load balancing determines when to turn machines on or off to handle a

given load [Pinheiro 2001], [Pinheiro 2003]. A critical problem for these ideas is that

in order to turn lightly loaded machines off or to assign workload to newly turned-on

machines, the task need to be transferred from one machine to another. But almost

all the operating systems used in the real clusters, e.g. Windows, Unix and Linux,
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cannot support such kind of operations. So in their research specific OS features

have to be developed and applied, which in turn limits the practicability of their

approaches. In [Pan 2005], Feng et al. proposed a method of finding the best match

of the number of cluster nodes and their uniform frequency (called energy gear in

their research). But they did not consider much about the effect of scheduling

algorithms. There are indeed a few high-performance computers designed with

energy-saving in mind, such as BlueGene/L [Adiga 2002], which used a "system on

chip" to reduce energy consumption, and Green Destiny [Warren 2002], which used

low-power Transmeta nodes. But their concern on energy saving is only confined

to the design of hardware, with nothing to do with the strategies for power control

at run-time, which also plays an important role.

There is also a large effort in saving energy for desktop and mobile systems.

In fact, most of the early researches in energy-aware computing were on these

systems. At the system level, there has been work in trying to make the OS

energy-aware by making energy the first class resource [Ellis 1999]. On device-

specific energy saving, studies have been conducted on saving the energy consumed

by CPU [Flautner 2001], by disk [Helmbold 1996], and by memory and network

[Krashinsky 2005]. A number of good methods and ideas in these studies could be

introduced to the energy saving schemes in cluster systems.

In [Aupy 2012], Aupy et al. aim at minimizing the energy consumption while

enforcing two constraints: a prescribed bound on the execution time (or makespan),

and a reliability threshold. Because DVFS lowers the reliability of a schedule while

reducing the energy consumption, the heuristics use re-execution of some tasks

to improve it. They assess the complexity of the tri-criteria scheduling problem

(makespan, reliability, energy) of deciding which task to reexecute, and at which

speed each execution of a task should be done, with two different speed models :

either the CONTINUOUS or the VDD-HOPPING model where processor can run

at a finite number of different speeds and change its speed during a computation.

They propose several novel tri-criteria scheduling heuristics under the continuous

speed model. Heuristics turn out to be very efficient and complementary.

Energy management in computing clusters can be achieved either by means of
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static or dynamic power management (SPM resp. DPM) [Chedid 2002]. SPM,

sometimes also referred to as low-power computing is applied at design time of

a system. For instance, by improving the CPU microarchitecture and/or using

low-power CPUs. Most recent examples of systems following this approach are

the BlueGene/Q [Chen 2011] supercomputers which are among the most energy

efficient computing systems available today [Green500List2013 2013].

2.5.5 Meta-scheduling solutions

Generally meta-scheduling solutions are classified into three categories, namely the

centralized, hierarchy, and decentralized schemes. In a centralized scheduling ar-

chitecture [Yu 2009], scheduling decisions are made by a central controller for all

VMs. The scheduler maintains all information about the VM and keeps track of all

available resources in the system. Centralized scheduling organization is simple to

implement and easy to deploy. A. Beloglazov and Rajkumar Buyya [Hamscher 2000]

have proposed and evaluated heuristics for dynamic reallocation of VMs. The goal

was to minimize energy consumption, while providing reliable QoS. Their results

show that the technique of dynamic reallocation of VMs and switching off the idle

servers brings substantial energy savings and is applicable to real-world Cloud data

centers. This work has not investigated setting the utilization thresholds dynami-

cally according to a current set of VMs allocated to a host, leveraging multi-core

CPU architectures, and decentralization of the optimization algorithms to improve

scalability and fault tolerance. In order to avoid scheduling self competition, some

Clouds only allows one scheduler to manage each virtual organization. However,

Centralized scheduling organization is not adequate for the Cloud because of the

nature of the Cloud computing environment. Again, these centralized services limit

their scalability.

In distributed scheduling, there is a central manager and multiple lower-level

entities. This central manager is responsible for managing the complete execution

of a VM and assigning the individual VM to the low-level providers. Each lower-

level entity scheduler is responsible for mapping the individual tasks into Cloud

resources. R. Ranjan et al [Ranjan 2006] proposed a meta-scheduling framework.
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Each resource consumer may value various resources differently depending on its

QoS based utility functions and may want to negotiate a particular price for using

a resource based on demand, availability and its budget. An SLA is the agreement

negotiated between a meta-scheduler, entitled the Grid Federation Agent (GFA),

and the Local Resource Management System (LRMS) of the local sites in terms of

acceptable job QoS constraints, such as job response time and budget spent. It high-

lights a bid-based SLA contract negotiation model. Furthermore, the contract net

protocol [Smith 1980] based SLA bids are restricted with a certain expiration time,

and different economic parameters such as setting price, user budget and deadline.

Authors propose a greedy backfilling heuristic for application on the participating

LRMSs during their cooperation with the meta-schedulers. For managing peering

arrangements between grids, authors proposed InterGrid. [Dias de Assunção 2008]

Although the structure of the overall Inter- Grid ecosystem is hierarchical, the In-

terGrid Gateways employed upon the top of each participating grid are distributed

in a decentralized manner. We can say that the grid has a hybrid structure. Each

IGG is aware of the agreements with other IGGs, and is capable of enabling resource

allocation across multiple grids with pluggable policies. The InterGrid/IGG relies

on external decentralized approaches.

Such approaches are not adequate since it requires entities to deploy different

scheduling policies to the central manager [Yu 2009]. The failure of the central

manager results in entire system failure.

In decentralized meta-scheduling, each job has its local schedule which receive

job submissions from local users. It assigns jobs to the local resource management

system. Local schedulers of different nodes are capable of exchanging information

and sharing jobs between each other in order to balance the resource load amongst

participating nodes. Besides the issue of efficiency and overhead, the decentralized

scheme brings better scalability, compared to other scheduling schemes. C. Comito

et al [Comito 2011] proposed a task allocation scheme for mobile networks focus-

ing on energy efficiency. To conservatively consume energy and maximize network

lifetime they have introduced a heuristic algorithm that balances the energy load

among all the devices in the network. Authors have implemented a prototype of
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the system and evaluated the scheduling strategy through simulation experiments.

Results show that the proposed scheduler greatly enhances the performance of the

system compared to time-based traditional schedulers like the round-robin. They

achieved improvements in terms of network lifetime, number of active devices and

number of completed tasks. Authors refer to a cooperative Energy-Aware Schedul-

ing strategy that assigns computational tasks over a network of mobile devices

optimizing the energy usage.

MaGateSim [Huang 2009], a Simulation Environment for a Decentralized Grid

Scheduler, is designed to be a decentralized grid scheduler that focusing on grid

scheduler interoperation, and is complemented by a dynamic resource discovery

approach on decentralized network. In order to share the jobs submitted from a local

MaGate to other MaGates within the same grid community, a set of community

scheduling important parameters are evaluated and discussed to address various

job delegation scenarios between different MaGates. The same authors propose a

decentralized dynamic scheduling approach named the community-aware scheduling

algorithm (CASA) [Huang 2013b]. However, the problem has not been explored in

the context of the optimization of energy consumption and in cloud computing.

2.5.6 Summary

The figure 4.1 below gives a comparative table of some algorithms. This chapter has

introduced the state of the art of this thesis. It has started with a brief introduction

into virtualization which is a fundamental technique enabling server consolidation in

many cloud data centers such VM live migration techniques. Then, cooperation and

coordination in distributed Systems and cloud computing were introduced. Finally,

related work on scheduling in cloud and energy management in cloud are presented.

In computing paradigm server virtualization is typically used to ease compute in-

frastructure management perform server consolidation for energy savings. First,

cooperation and coordination in distributed Systems were introduced by presenting

its mechanisms and a few selected cooperation and coordination in cloud. After-

wards, cloud computing was presented as a promising computing paradigm whose

goal is to offer resources (e.g. compute, storage) on-demand based on the pay-as-
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Algorthm Dec Cooperative Energy Virt
[Arora 2002][Lai 2008] + - - -
[Yu 2009] [Aupy 2012]
[ORGERIE 2010]

- - + +

[Buyya 2002a] + - - +
[Tian 2013] [Beloglazov 2012]
[Kim 2011] [Zong 2011]

- - + +

[Sotomayor 2009b]
[Fallenbeck 2006]
[Emeneker 2007]

- - - +

[Bein 2010] - - + -
[Sun 2011] - + + -
[Xian 2007] - - - -
[AlEnawy 2005] - - + -
[Nagothu 2010] - - - -
[Ranjan 2008] + + - -
[Pinheiro 2001] - + - -
[Huang 2013b] + + - -
[Comito 2011] + - + -
[Hamscher 2000] - - - +
[Ranjan 2006] + - - +
Our decentralized ap-

proach (chapter 3)
+ + + +

Table 2.1: Characteristics of some existing algorithms. Dec=Decentralized -
Virt=vituluzation

you-go model. To be precise, we have first provided a cloud computing definition

and introduced the cloud characteristics, service, and deployment models. Then,

deployment models. Finally, we have conducted a review of scheduling and energy

management approaches in cloud computing. Particularly, presenting the schedul-

ing phases, we have also reviewed current researches. In addition, after defining the

terminology and presenting traditional power measurement techniques, we have dis-

cussed techniques used for energy saving. Our study has shown that despite the

fact that a lot of efforts have been made over the past years to propose schedul-

ing algorithms, to design and implement IaaS cloud management systems, as well

energy management techniques in computing clusters, much work is still left to be

done. The three key observations from this chapter are:

• Despite the vision of consolidation, cooperation and coordination existing
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IaaS cloud management systems still must be optimized to reduce energy

consumption in data center. Moreover, most of the IaaS cloud management

systems are based on centralized architectures thus limiting their scalability.

• There is a clear lack of an experimentally validated holistic energy-efficient

IaaS cloud management system which federates the introduced VM manage-

ment algorithms (i.e. VM placement, underload and overload management,

VM consolidation, and power management).

• A huge amount of attention has been given to the design of decentralized VM

management algorithms. A considerable low amount of attention has been

given to the application of cooperative meta-scheduling algorithms.
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In the previous chapter we have presented the context of this work and reviewed

the state of the art on the design and implementation of energy-efficient cloud man-

agement systems. Our analysis has shown that existing cloud management systems

are mostly based on centralized architectures and energy management mechanisms

are suffering several limitations. To address these limitations, our contribution is to

design, implement, and evaluate a novel cloud management system which provides a

holistic energy-efficient VMmanagement solution by integrating advanced VMman-

agement mechanisms such as underload mitigation, VM consolidation, and power

management. We propose two novels energy-efficient cloud management heuristics.

This chapter presents the design of these algorithms. It is structured as follows.

Section 3.1 introduces the design principles. Section 3.2 describes the model and

objectives. Section 1 introduces the algorithm Anti Load-Balancing. Section 3.4

presents the centralized approach. Section 3.5 discusses the decentralized approach.

Finally, Section 3.6 summarizes the contributions.

3.1 Design principles

The main goal of this thesis is to design and implement a scalable, and energy-

efficient IaaS cloud management system. Thereby, several properties have to be

fulfilled by a cloud management system in order to achieve these goals. First,

the cloud management system architecture has to scale across many thousands

of nodes. Second, nodes and thus framework management components can fail

at any time. Therefore, the system needs to self-heal and continue its operation

despite of component failures. Finally, the cloud management system has to be

easily configurable. While achieving this goal, our system must also improve energy

efficiency as discussed in Chapter 2.

Like managing load distribution, energy consumption is a fundamental problem
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for large scale systems. Choice of location of running jobs has a large impact on

the behavior of such systems. A minimal number of computers can be selected

in order to run requested job at a particular time, even taking into account user

requirements. Users can even add more criteria to obtain an optimal power con-

sumption. Difficulties arise as dynamism is introduced and as jobs arrive, leave

and change over time. Several solutions exist to reduce power consumption due

to computational nodes and data centers. Also, mixing energy consumption and

performance (or QoS) objectives rise the difficulty level needed to find a good place-

ment for tasks. Furthermore, to achieve energy savings while maintaining system

performance, we need: i) a good description of the characteristics of applications

and user feedback, ii) a complete and concise description of the system. A problem

usually studied in distributed systems is how to evenly distribute workload. But

when the goal is to reduce energy consumption, this type of algorithms can lead to

have computers largely under-loaded and therefore consuming energy unnecessarily.

Our study will be the management of virtual machines in the data center. Here we

will therefore look at the opposite problem : concentrate the load on a minimum

number of machines. The goal is to turn off the released computers and therefore

minimize the energy consumption of the system. To achieve this goal a node is

selected, its load is distributed to other nodes and then switched off. To study this

problem we have proceeded in three phases: (i) Model the problem, (ii) Design an

algorithm and develop a simulator, (iii)Simulate.

To save energy, as seen in Chapter 2, two main techniques exist: dynamic

voltage frequency/scaling (DVFS) and consolidation. Our work will be based on

the latter. This will involve to move VMs in order to switch off underloaded nodes

for better energy efficiency. To study this problem we developed an heuristic "anti

load-balancing" to provide a power gain in managing data centers.

In this chapter we will optimize the jobs’s migration in order to increase the

gain of energy with anti load-balancing in distributed systems. We developed an

heuristic named Energy aware clouds scheduling using anti load-balancing algorithm

(EACAB) which works by associating a credit value with each node. The credit

of a node depends on its affinity to its jobs, its current workload and its commu-
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nication behavior. We propose an approximation approach that places tasks based

on the load on resources. This algorithm is based on the use of an indicator called

credit for each job that quantifies its affinity for each machine and determine the

best candidates for migration. Apart from the algorithm itself, this thesis presents

an implementation and evaluation of a simulator Enersim 1 which derive of the

simulators Cloudsim [Calheiros 2011] and Alea [Klusáček 2010]. Another version of

Ensersim 1 named Enersim 2 is used for the evaluation of our decentralized coop-

erative algorithm. The two simulators are presented in chapter 4. We present our

algorithms and will show experimental results in the next chapter to indicate how

our approximations approach can provide solutions closer to the optimal in terms

of energy efficiency.

3.2 Model and objectives

The overall objective of the energy management policy is to reduce energy con-

sumption, while satisfying the users’ performance demand within Cloud. In this

section, we discuss the model, hypotheses, constraints and objectives.

This section presents the system model of energy used for an energy-efficient

IaaS cloud management for private clouds. First, the distributed system model is

introduced. Then, objectives are presented.

3.2.1 Model

In the following we will use interchangeability the terms job, task and VM. The

nodes are the machines that host virtual machines ie the host nodes of virtualization.

The table 4.1 gives a list of notations and terminology used.

We consider a cloud data center environment consisting of H =
∑N

i=1Hi hetero-

geneous physical nodes. Each site i has Hi nodes. There are N sites. Each node is

characterized by the CPU performance defined in Millions Instructions Per Second

(MIPS). We consider Ti tasks associated to VMi VMs, that run on the site i.

• Ri : load of the site i. This load depends on the number of VM (VMi)

executed by the site and their load (li,j,k is the requested load of VM k in site
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Table 3.1: List of notations and terminology used.

H and N set of nodes and number of sites
Hi set of nodes in site i
Hi,j node j in site i
Pmin

i,j and Pmax
i,j minimun power (pmin) and maximum power (pmax) of node j in site i

V set of VMs
VMi set of VM in site i
V Mi,j set of VMs in node j in site i
V Mw

i,jait set of VMs waiting in node j in site i
V Mi,j,k VM k in node j in site i
V Mmin

i,j,k smallest VM k in node j in site i
li,j,k load of VM k in node j in site i
Ri requested load of site i
ri,j the aggredated load of all VM on node j in site i
V Mpe

i,j,k number of processing elements (PEs) requested by VM k in node j in site i
V Mmips

i,j,k speed VMi,j,k in node j of in site i
V MRAM

i,j,k Ram of VMi,j,k in node j of in site i
Di,j,k the estimated execution duration of VM k in node j in site i
Dw

i,j,k the waited duration of VM k in node j in site i
wi,j,k represent the weight of VM k in node j in site i
nH number of nodes
nHi number of nodes in site i
nVM number of VMs
nVMi number of VMs in site i
nVMi,j number of VMs in node j
ε and γ over-loaded threshold and under-loaded threshold
Hunder

i,j under-loaded node j in site i
Hover

i,j overloaded node j in site i
M req

i,j,k request message sent by node j in site i for VM k
Hreq

i,j requester node j in site i
Hresp

i′,j′ responder node j′ in site j′ for execution VM k

Mack
i′,j′,k an accept message sent by node j′ in ste i′

Mass
i′,j′,k an assign message sent from a node j in site i to another node j′ in site i′ for

exceution of a job k.
M info

i”,j”,k” inform message sent from a node j” in site i” to inform other nodes that a
VMi”,j”,k” is being rescheduled

i on node j). ri,j is the aggregated requested load of all VM on node j in site

i. Note that if VM k is not running on node j in site i, then li,j,k=0.

Ri =
∑Hi

j=1(ri,j)

ri,j =
∑Ti

k=1(li,j,k)
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• Load Ci and speed Vi of site i

Ci =
∑Hi

j=1(ci,j)

Vi =
∑Hi

j=1(vi,j)

ci,j Actual load of node j in site i

vi,j Maximum speed of node j in site i in Mips

• Job satisfaction Si of site i (same for si,j , job satisfaction of node j in site i)

Si = Ci
Ri

si,j = ci,j

ri,j

• VMpe
i,j,k : number of processing elements (PEs) requested by a VM k in node

j (CPUs) on site i. "Note: It will be assumed in experiment part that this

value is 1".

• VMRAM
i,j,k is constant accross the node and only depends on k. j and i are

kept for coherence of notations.

• Di,j,k : the estimated execution duration of VM VMi,j,k

• wi,j,k = VMpe
i,j,k.Di,j,k : represent the weight of VM VMi,j,k

• The load of VMi,j,k depends on the speed estimation VMmip
i,j,k of the VMi,j,k

in node j of site i, its estimated execution duration : li,j,k = wi,j,k.V M
mips
i,j,k .

3.2.2 Hypothesis

• Communications are modeled by a linear model of latency and bandwidth.

• For each scenario there is at least one VM.

• Migration cost. To migrate a VM, only RAM has to be copied to another

node. The migration time depends on the size of RAM of VMi,j,k in node j

of site i and the available network bandwidth.

VM migration delay = VMRAM
i,j,k / bandwidth + C (C is a constant).

Bandwidth is considered as constant.
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• Nodes have two different power states : Switched on and switched off. While

switched on, power consumption is linear in function of load between Pmin
i,j

and Pmax
i,j .

We will use the classical linear model of power consumption in function of load :

∀i, j Pi,j = Pmin
i,j +ci,j(Pmax

i,j −Pmin
i,j ) if node j is switched on, Pi,j = 0 otherwise.

Therefore the total power consumption of the system is:

P =
∑N

i=1
∑Hi

j=1 Pi,j

To obtain energy consumed during a time slice, instantaneous power is inte-

grated over time
∫ t2

t1 P(t) dt. Total energy is then obtained by summing all the

energy of those time slices.

3.2.3 Objectives

The main objective of our approach is to improve cloud’s total energy efficiency

by controlling cloud applications’ overall energy consumption while ensuring cloud

applications’ service level agreement. Therefore our work aims to satisfy several

objectives :

• Ease of task management : we design a system which is flexible enough to

allow for dynamic addition and removal of nodes. As system components can

fail at any time, it is desirable for a system to heal in the event of failures

without human intervention. Consequently, we aim at designing a system

using self-healing mechanisms to enable high availability.

• Energy Efficiency: One of our goals is to propose task placements management

algorithms which are capable of creating idle times on nodes, transitioning idle

nodes in a power saving state and waking them up once required (e.g. when

load increases).

3.3 Anti load-balancing

In many fields of research, performance of distributed systems, the load-balancing

technique is often used in order to guaranty good performance. This technique leads
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to spread load on all available nodes, which is efficient from the performance point

of view, but not from the energy point of view. For energy savings, it is the opposite

problem of consolidation which is studied. This load concentration or unbalancing

operation saves the power consumed by the powered-down nodes, but can degrade

the performance of the remaining nodes and potentially increase their power con-

sumption. Thus, load concentration involves an interesting performance vs. power

tradeoff. The goal is to turn off the unused nodes and therefore minimize the whole

energy consumption of the system. It is critical to reduce energy consumption in

information systems, especially in large scale distributed systems. There are many

algorithms on how to reduce the total power consumption in such systems, one of

the most efficient being to turn off a maximum number of nodes without impacting

the jobs running on the system. In these algorithms heavily loaded nodes turn into

heating points. It leads to an increase in the energy consumption on the cooling

infrastructure. Most researches on energy efficiency try to reduce energy consump-

tion of nodes, but they usually do not take into account the cost of cooling systems

and related infrastructure. Thus it is important to set a minimum threshold to

consolidate jobs, but also to avoid to load nodes heavily by concentrating too many

jobs on the same node.

Dynamic consolidation of virtual machines (VMs) and switching idle nodes off

allow Cloud providers to optimize resource usage and reduce energy consumption.

However, the obligation of providing high quality of service to customers leads

to the necessity of dealing with the energy-performance trade-off. Consolidation,

concentrating the workload onto fewer physical nodes, can save energy. Current

virtualization techniques have a low overhead, allowing to consolidate dozen of

virtual machines on one node with a low impact.

The main contribution of this section is to propose an efficient algorithm that

migrate VMs to reduce energy-consumption while preserving performance and pre-

venting hot spots. We propose an energy-efficient heuristic Anti Load-Balancing

(ALBA), for virtual machine placement in cloud computing virtualized data centers,

in oder to reduce a low energy consumption. The anti load-balancing technique is

the basis of our two centralized and decentralized approaches that we will present in



3.3. Anti load-balancing 77

the remainder of this chapter. This run-time algorithm will migrate tasks while they

are running, using on-the-fly migration technology. Anti load-balancing algorithm

based on migration techniques use mainly two threshold based rules. Depending

on a node load compared to a threshold, VMs are migrated in order to switch off

nodes. Also if over a threshold, load is balanced on other nodes or a new node is

switched on in order to keep a good quality of service.

The proposed algorithm works by associating two threshold values with each

node. When a node is under-loaded (load < γ), all its tasks are migrated to a

comparatively more loaded node. We also use the over-loaded threshold ε, which

we call saturation, to measure the saturation of a node.

In this section we present our algorithm ALBA. First, probem description, node

underload and overload detection and the VMs placement are detailed. Then, algo-

rithm statements and scenarios are presented. Finally, the algorithm is presented.

3.3.1 Problem description and VMs placement model

3.3.1.1 Assumption

For simplicity, we assume that each physical node consists of one processor. The

nodes are heterogeneous. One or more VMs can run in a node. The tasks or

subtasks submitted by end users are encapsulated in VMs. We assume that each

new VM has a predefined resource requirement. If a node runs VMs, we call it an

active node. Accordingly, idle nodes are called inactive nodes.

3.3.1.2 Problem description

In cloud computing environments, it is not sure when the task will be submitted and

how many resources it will need. So the VMs will be sent to a node dynamically.

When the VM finishes or the size of VM changes, it can be interesting to rebuild

the correspondence relationships between VMs and nodes. To put the resource

into effective use and minimize the number of active nodes, VM migrations are

inevitable. But VM migration belongs to coarse-grain relocation, and the energy

cost caused by it can not be looked down. Therefore, we will focus on how to make
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a placement scheme to increase resource utilization rate and reduce energy waste.

3.3.2 Node Underload Detection

Scheduling a workflow is a process of finding the mapping of tasks to the suitable

resources so that the execution can be completed with the satisfaction of objec-

tive functions, such as execution time minimization. Existing workflow scheduling

approaches are non-coordinated, where workflow schedulers perform scheduling re-

lated activities independent of the other schedulers in the system. They directly

submit their tasks to the underlying Cloud resources without taking into account

the current load, priorities, and utilization. This leads to over-utilization or a bot-

tleneck on some valuable resources, while leaving others largely under-utilized.

Although complex underload detection strategies can be applied, for the purpose

of demonstration in this chapter a simple approach is used. First, all the underload

nodes are found using the selected underload detection algorithm, and the VMs

selected for migration are allocated to the destination nodes. Then, the system finds

a node with the minimal utilization compared with the underloaded threshold, and

attempts to place all the VMs from this node on other nodes, while keeping them

not overloaded. If such a placement is feasible, the VMs are set for migration to the

determined target nodes. Once the migrations are completed, the source node is

switched to sleep mode to save energy. If all the VMs from the source node cannot

be placed on other nodes, the node is kept active.

3.3.3 Node Overload Detection

Each compute node periodically executes an overload detection algorithm to de-

consolidate VMs when needed in order to avoid performance degradation and SLA

violation. A static CPU utilization threshold is used in this case. One of the

simplest overload detection phase is based on an idea of setting a CPU utilization

threshold distinguishing the non-overload and overload states of the node. When

the algorithm is invoked, it compares the current CPU utilization of the node with

the defined overloaded threshold. If the threshold is exceeded, the algorithm detects
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a node overload.

This process is iteratively repeated for all non-overloaded nodes

3.3.4 VMs placement model

Energy cost is caused by VMs running, VMs migrations and the fixed consumption

of starting nodes. The energy use for VMs running is determined by the tasks en-

capsulated in them, and we can not cut this part through optimizing. The resource

size and migration number determine the wastage of energy caused by migration

operations. So, the smaller resource size and the smaller migration number, the

less energy will be wasted. The energy consumption for running a node is fixed and

unmodifiable by algorithm. As a result, we will minimize the number of nodes and

the migration operations.

3.3.5 Algorithm statements

Consider a system with an algorithm of centralized decision : it is usually a strategy

of client-server / master-slave. A node is responsible for allocation. A node Hi,j

decides which node Hi′,j′(j′ 6= j) move away its load and is switched off. For the

centralized algorithm (client-server) there are several way to manage the list of VMs

: (i) a central list, (ii) each node has a list of VMs. In the second approach, each node

initializes its list with its list of VMs. In the case when a node Hi,j is lightly loaded,

its load is migrated to another nodeHi′,j′ and it goes in sleep mode. This centralized

approaches has several advantages such as a simple implementation and policy

update information, and good efficiency (low overhead since few communication

occur)

3.3.6 Scenario

Our approach is to develop systems that turn nodes off to save power under lighter

load. The key component of our systems is an algorithm that makes load unbalanc-

ing decisions by considering both the power and performance implications of turning

nodes off. In more detail, the technique periodically considers whether nodes should
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be added to or removed from the site (or VMs added or removed from nodes), based

on the expected performance and power consumption that would result, and decides

how the existing load should be re-distributed in case of a configuration change.

Using migration of VMs as a solution for improving energy efficiency can lead

to dynamically consolidate VM on a minimal number of physical nodes according

to their current resource requirements. The second phase enables distributing or

redistributing the load of some nodes after an addition or removal decision. For a

node load (ci,j) two thresholds are defined : under-loaded threshold (γ) and over-

loaded threshold (ε). The goal is that ci,j verifies the formula γ <= ci,j <= ε.

The system periodically checks whether there are underloaded nodes (Hunder
i,j ) or

overloaded (Hover
i,j ). For eachHunder

i,j the system seeks, first if it exists nodes that can

receive load of Hunder
i,j . If yes, load is moved to the node and the Hunder

i,j is switched

off; if there is no node the Hunder
i,j remains active. Then another check is made on

Hover
i,j . The system always tries to reduce the load of these nodes whose load is

greater than ε. The proposed approach to dynamic consolidate VM or Distributed

Dynamic VM Consolidation consists in splitting the problem into 4 steps :

• Step 1 : determining when a node is considered as being overloaded; requir-

ing migration of one or more VMs from this node. If the decision is to add

one or more nodes, the algorithm must determine what part of the current

load should be sent to the added nodes. Obviously, the load to be migrated

should come from nodes undergoing excessive demand for resources.

• Step 2 : determining when a node is being underloaded in order to migrate

all VMs from this node and switch the node to the sleep mode.

• Step 3 : selection of VMs that should be migrated from an overloaded node.

• Step 4 : finding a new place for the VMs selected for migration from

the overloaded and underloaded nodes. Placement of new requested VM or

selected VMs for live migration is a critical issues in virtualized cloud com-

puting and should be performed in a way that ensures QoS, SLA and also

prevent to increase total energy consumption by physical nodes in a data cen-
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ter, since one of the important requirement for cloud computing environment

is providing QoS or SLA for consumers.

This approach has two major advantages compared with traditional VM consolida-

tion algorithms : (1) splitting the problem simplifies the analytic treatment of the

steps; and(2)the approach can be implemented in a distributed manner by execut-

ing the underload / overload detection and VM selection algorithms on nodes, and

the VM placement algorithm on replicated controller nodes.

3.3.7 Algorithm

Our systems use load concentration as a first-class technique, rather than as a re-

medial technique like in systems that harvest idle workstations or as a management

technique for manually excluding a node. The key component of our system is an

algorithm that makes load unbalancing with concentration decisions by considering

both the total load imposed on the node and the power and performance of different

node configurations. In more detail, the algorithm periodically considers whether

VMs should be added to or removed from the node, based on the expected per-

formance and power consumption that would result, and decides how the existing

load should be re-distributed in case of a configuration change. In the folowing

algorithm 1 :

• Line 12 to 14 execution of the step 1,

• Line 8 to 10 execution of the step 2,

• Line 14 to 15 execution of the step 3,

• Line 7 to 16 execution of step 4,

To maximize their Return On Investment (ROI), Cloud providers need to apply

energy efficient resource management strategies, such as dynamic VM consolidation

with switching idle nodes to power-saving modes. However, such consolidation is

not trivial, as it may result in violations of the SLAs negotiated with customers.

This chapter proposed novel heuristics for distributed dynamic VM.
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Algorithm 1 Pseudo-code for node configuration and anti load-balancing algo-
rithm

1: N=number of sites
2: Hi,j= node j in site j
3: ci,j= node Hi,j load
4:
5: Periodically do
6: for (Hi,j in Hi) do
7: if node support being switched off then
8: if (ci,j < γ) then
9: determine nodes to receive ci,j and ask Hi,j to migrate ci,j out and ask

Hi,j to turn itself off
10: else
11: if (ci,j > ε) then
12: if (exist switched on node that can receive ci,j) then
13: move load to this node
14: else
15: turn on new nodes
16: determine the charge to be sent to those added nodes and ask Hi,j to

share ci,j between added nodes

3.4 Centralized approach

This section presents an Energy aware clouds scheduling using anti load-balancing

algorithm (EACAB). The proposed algorithm works by associating a credit value

with each node. The credit of a node depends on its affinity to its jobs, its current

workload and its communication behavior. Energy savings are achieved by con-

tinuous consolidation of VMs according to current utilization of resources, virtual

network topologies established between VMs and thermal state of computing nodes.

The rest of the section is organized as follows. Subsection 3.4.1 discusses related

Credit based Anti load-balancing model, followed by the algorithme description

presented in Subsection 3.4.2.

3.4.1 Credit based Anti load-balancing model

The algorithm proposed aims at maximizing Credit which is a value used when

calculating the energy-efficiency of the system behavior.

This Credit algorithm is an adaptation of the Comet Algorithm [Chow 2002], a

load balancing algorithm. Comet calculates credit for mobile agent. Each software
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agent is trying to maximize its own credit by moving between nodes. An agent ai

uses the following formula:

Ci = −x1wi + x2hi − x3gi

Where wi : computation load of the node running agent ai, hi and gi : communi-

cation load inside and outside agent ai, and where x1, x2 and x3 are positive float

coefficients which constitute dependence assigned to each agent from its creation to

estimate its affinity relative to its node. Thus an agent will move to a new node if it

result in a lower node load, or if it reduces external communication or if it increases

internal communication. This algorithm does not take int account migration cost.

In the same way, the proposed algorithm in this section works by associating a

credit value with each node. The credit of a node depends on the node, its current

workload, its communications behavior and history of task execution. When a node

is under-loaded (ci,j < γ), all its VMs are migrated to a comparatively more loaded

node.

In dynamic load unbalancing schemes, the two most important policies are se-

lection policy and location policy. Selection policy concerns the choice of the node

to unload. Location policy chooses the destination node of the moved VMs. An

important characteristic of selection policy is to prevent the destination node to be-

come overloaded. Also, migration costs must be compensated by the performance

improvement.

Each node has its own Credit, which is a float value. The higher a node Credits,

the higher the chance its VMs to stay at the same node. It is equivalent to say that

chances of its VMs to be migrated is lower. The credit of a node increases if:

• Its workload or the number of VMs in the node increases

• Communication between its VMs and other nodes increases

• Its load increases while staying between the under-loaded threshold γ and the

over-loaded threshold ε

On the contrary, the credit of a node decreases in the cases below:
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Figure 3.1: Tasks migration.The percentage represents here the processor usage of
each VM on the node.

• Its workload or its number of VMs decrease

• It has just sent or received a message from the scheduler which indicates that

the node will probably become empty in a short while.

The Credit of a node will be used in the selection policy: the node which credit is

the lower is selected for VMs migration(c.f Fig. 3.1). The location policy identifies

the remote node with the highest credit which is able to receive the VMs selected

by the selection policy without being over-loaded.

However, as shown in figure 3.2, such consolidation is not trivial, as it can result

in overloading a node. Also keeping one particular node heavily loaded for a large

period of time can lead to a heating point. It has a negative effect on the cooling

system compared to several colder points.
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Figure 3.2: Different contexts for a migration. Both cases are possible but the first
one creates a hot spot on N3

In Figure 3.2 we have two nodes N1 and N2. Node N2 is under-loaded because

its load is below the underload threshold (γ = 50%). In this situation the load N2

migrates to the node N1. Then N2 is switched to sleep mode.

3.4.2 Algorithm

In Comet mobile agents move between nodes according to their affinities (credit) to

achieve load balancing. Here we work with VMs which migrate depending on the

load of the node. We apply the Credit concept to the migration of VMs. EACAB

algorithm is based on the technique of calculating credit (σi,j) of each node j (in

site i) by the same method of Comet[Jeon 2010]. In EACAB, the formula is then:

σi,j = ci,j − ti,jsi,j + ε− γ

ti,j = (100 ∗ (ε− ci,j) ∗ (ci,j − γ) ∗ (λ ∗ ci,j + δ))/si,j

λ and δ are two constants respectively 10 and 20. The values 10 and 20 were
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Figure 3.3: Credit of node. γ = 50% and ε = 80%

chosen in order to favor the avoidance of hotspots (overload) compared to avoiding

underload nodes. Indeed, the σi,j value is used for sorting the nodes to consider

in the following algorithm 2. A smaller value of σi,j leads a node j in site i o be

considered first, and actions are firstly held on this one. On Figure 3.3, one can see

that overloads leads to smaller values than underloads. Other values than 10 and 20

would lead to different behaviour of the algorithm: It could favor underload versus

overload nodes first, for instance. In the experiment part, we only considered the

previous scenario. Were ci,j is the actual load of node j in site i, ri,j is its requested

computation load, si,j is its VM satisfaction, and γ and ε are respectively under-

load and over-load threshold. ti,j is the influence of the communications on the

behavior of the node.

EACAB provides task scheduling strategy, which dynamically migrate tasks

among computing nodes, transferring tasks from underloaded nodes to loaded but

not overloaded nodes. It balances load of computing nodes as far as possible in

order to reduce program running time. The decision making algorithm behaves
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globally as follows:

• If σi,j < 0 , the node j of site i is over-loaded or under-loaded.

• If ci,j > ε , the node j of site i is over-loaded

• If ci,j < γ , the node j of site i is under-loaded

This algorithm is described in Algorithm 2. For the sake of simplicity, corner

cases such as all nodes over-loaded are not included. Selection policies take into

account credits and migration cost. The selected node (node j′ in site i′) is the one

with the minimun σi′,j′ weighed by the migration cost between the current position

of the VM and the potential node. If τi,j,i′,j′ is the migration cost between the node

j in site i and the node j′ in site i′, the selected node is the one that minimize :

σi′,j′ .
τi,j,i′,j′

Maxi”,j”(τi,j,i”,j”) (3.1)

Algorithm 2 Energy aware clouds scheduling using anti load-balancing algorithm
for each node Hi,j(EACAB)

1: Calculate ci,j , σi,j // Load, credit of node j in site i
2: Sort in ascending order other nodes (∀(i, j) 6= (i′, j′)) according to the value of

their credit (all, but Hi,j)
3: if (ci,j < γ) then
4: for (all nodes j′ in all sites i′ sorted by their credits) do
5: if (Hi,j 6= Hi′,j′) and (ci′,j′ ≥ γ) and (ci,j + ci′,j′ < ε) then
6: Add Hi′,j′ to potential destination set Potential
7: Migrate all VMi,j from Hi,j to the element with lower credits weighted by

migration cost in Potential (see equation 3.1)
8: else
9: while (ci,j > ε) do

10: // ci,j and σi,j have changed after migration of VMi,j,k

11: Calculate ci,j

12: Calculate σi,j

13: Calculate lmin
i,j // load of the lightest task

14: Let VMi,j,k the task with lmin
i,j,k = li,j,k

15: for ( all nodes j′ in all sites i′ sorted by their credits) do
16: if (( Hi,j 6= Hi′,j′) and (ci′,j′ + lmin

i,j < ε)) then
17: Migrate VMi,j,k from Hi,j to Hi′,j′ .
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This migration algorithm’s is composed of two parts. In the first part (line 6 to

13), it checks for each node j if the load is below the threshold. If this is the case,

it locates the node j′ that will receive all tasks of node j. The second part (line

15 to 25) manages hotspots. To reduce the load of an overloaded node, it begins

to migrate the lightest task. Selection policy will choose the task that will stay

the longest on the node. Policy of localization will then identify the node that will

receive the task without exceeding its capacities (ie. its load after migration will

still be under ε). So this node will be the new destination of the task.

3.5 Decentralized approach

The dynamic scheduling of a large number of VMs as part of a large distributed in-

frastructure is subject to important and hard scalability problems that become even

worse when VM image transfers have to be managed. Consequently, most current

algorithm schedule VMs statically using a centralized control strategy. An analysis

of virtual infrastructure managers (VIMs) reveals that most of them still sched-

ule VMs in a static manner [Hoffa 2008] [Nurmi 2009]. Indeed, the advanced solu-

tions that promote the implementation of dynamic VM scheduling [Hermenier 2009]

[Sotomayor 2009a] are subject to strong limitations regarding scalability, reactivity,

and fault-tolerance aspects. Although scheduling is a non deterministic polynomial

time-hard problem, most of these proposals rely on a master/worker design using a

single daemon that is in charge of performing the different phases: monitoring all

resources, computing the schedule, and applying the reconfiguration. The choice

of a single master node leads to several problems. First, during the computation

and the application of a schedule, this manager does not enforce QoS properties

anymore, and thus cannot react quickly to QoS violations. Second, because the

manipulation of VMs is costly, the time needed to apply a new schedule is particu-

larly important: the longer the reconfiguration process, the higher the risk that the

schedule may be outdated, due to the workload fluctuations, when it is eventually

applied. Finally, a single master node can lead to well-known fault-tolerance issues

or a node can be overloaded; a subgroup of VMs may be temporarily isolated from
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the master node in case of a network disconnection; QoS properties may not be en-

sured any more if the master node crashes. Some nodes could be overloaded which

increases energy consumed. Even if a better design of the master can help to sep-

arate each phase in order to resolve some of these issues (a multi-threaded model,

for instance, can help to track workload changes so that a scheduling process can

be stopped if need be), a centralized approach will always be subject to scalability,

reactivity, and fault-tolerance issues.

In this thesis, we investigate whether a more decentralized approach can tackle

the aforementioned limitations. Indeed, scheduling takes less time if the work is

distributed among several nodes, and the failure of a node does not impede schedul-

ing strongly any more. Several proposals have been made precisely to distribute

dynamic VM management [Feller 2010] [Yazir 2010]. However, the resulting proto-

types are still partially centralized. Firstly, at least one node has access to a global

view of the system. Secondly, several virtual infrastructure managers (VIMs) con-

sider all nodes for scheduling, which limits scalability. Thirdly, several VIMs still

rely on service nodes, potential single points of failure. [Quesnel 2012] introduce

distributed VM scheduler (DVMS), a VIM that schedules and manages VMs co-

operatively and dynamically in distributed systems. Author designed it to be non-

predictive and event-driven, to work with partial views of the system, without any

potential single points of failure. Our VIM thus has the same characteristics and

is more reactive, more scalable, and more tolerant to nodes crashes or network dis-

connections. In this section, we present distributed VM scheduler, an algorithm

that enables VMs to be scheduled cooperatively and dynamically in large-scale dis-

tributed systems. We describe, in particular, how several VM reconfigurations can

be dynamically calculated in parallel and applied simultaneously. Reconfigurations

are enabled by partitioning the system (i.e., nodes and VMs) on the fly. Parti-

tions are created with a minimum of resources necessary to find a solution to the

reconfiguration problem.

Distributed VM consolidation algorithms enable the natural scaling of the sys-

tem when new nodes are added, which is essential for large-scale Cloud providers.

An illustration of the importance of scalability is the fact that Rackspace, a well
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known IaaS provider, has increased the total node count in the second quarter of

2012 to 84,978 up from 82,438 nodes at the end of the first quarter leading to 8%

per year. Another benefit of making VM consolidation algorithms distributed is the

improved fault tolerance by eliminating single points of failure: even if a compute

or controller node fails, it would not render the whole system inoperable. The pro-

posed heuristics efficiently implement dynamic VM consolidation in a distributed

manner according to the current utilization of resources applying live migration,

switching idle nodes to the sleep mode, and thus, minimizing energy consumption.

The proposed approach can effectively adhere to strict QoS requirements, as well

as handle multi-core CPU architectures, heterogeneous infrastructure and hetero-

geneous VMs.

The key contributions of this section are the following.

• The introduction of a distributed approach to energy and performance efficient

dynamic VM consolidation.

• Novel heuristics for the problem of energy and performance efficient dynamic

VM consolidation following the introduced distributed approach.

The remainder of this section is organized as follows. First we will present the de-

centralized dynamic scheduling anti load-balancing Algorithm for Clouds (CSAAC).

Then we will present the algorithm description and finally conclude the section.

3.5.1 The Cooperative scheduling Anti load-balancing Algorithm

for cloud

The approach use a multi-phase decentralized scheduling solution. It is comprised

of migration phase, the job submission phase responsible for job dissemination, as

well as the dynamic scheduling phase responsible for iterative scheduling improve-

ment. Furthermore, the decentralized approach is a collection of implementation-

independent interfaces and heuristics, which are used to facilitate job scheduling

across decentralized distributed nodes.
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3.5.1.1 Algorithm statements

There are in total N sites and in each site a set Hi of nodes distributed in a cloud

data center system with the same start time U, where in some of the nodes have

local job submission. Each time when one node (initiator) attempts to (re)assign

a task to another node (or the same node) for execution, the initiator is called the

requester node, and the node receiving such a request is called the responder node.

Each task VMi,j,k i ∈ [1, 2, ..., N ] and j ∈ [1, 2, ..., nHi] is sent from node Hi,j . The

decentralized approach is comprised of two phases, namely the job submission phase

and the dynamic scheduling phase, which work together to ensure both a rapid job

distribution and an optimized rescheduling effect. Figure 3.4 shows an example

of execution of a job in a decentralized and cooperative environment. After job

submission a request for execution is sent to all nodes (using flooding technique).

Nodes that fulfill the job requirements send responses to become a candidate. The

process follows at least one of the phases of the algorithm.

• Job submission phase. This phase is the first phase of the algorithm.

Each time when a node j, receives a VMi,j,k submitted by its local user, node

j behaves as a requester node Hreq
i,j and generates a request messageM req

i,j,k for

VMi,j,k. VM characteristic information including estimated execution time

Di,j,k and requested amount of Processor Elements (PEs) VMpe
i,j,k will be ap-

pended to the generated request message. Afterwards, request message M req
i,j,k

is replicated and disseminated to each of the discovered remote nodes asking

for the job delegation possibilities. All nodes receiving the job delegation re-

quest message M req
i,j,k, including the requester node j itself, are considered as

responder nodes. Each responder node Hresp
i′,j′ needs to send an accept mes-

sage Mack
i′,j′,k to decide whether the node j′ is able and willing to execute the

received VMi,j,k. A M req
i,j,k takes various factors, such the current state of the

node which allows it to execute the VM using the most amount of energy

relative to other nodes. If yes, each candidate, considered as responder node,

computes an estimated completion time according to its current scheduling,

mainly the energy consumed and resource status and delivers the information
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by means of an accept message Mack
i′,j′,k. In addition, the estimated response

time and the estimated energy consumed if VMi,j,k is executed by node j′

in site i′ are also appended to the generated accept message, which can be

utilized by the requester node for responder node evaluation and selection.

Each time a request message M req
i,j,k is generated by the requester node and

disseminated to contactable remote nodes, the requester node waits and col-

lects all received Mack
i′,j′,k, generates an assign message Mass

i′,j′,k and send it to

a proper remote node Hass
i′,j′(assignee node) to which to delegate the VMi,j,k.

An arbitrary node i in site i, due to the effect of the job submission phase, has

received a set of jobs from either local users’ submissions or remote nodes’ del-

egations. A rescheduling process helps this approach to adapt to the changes

of both underlying resources and arriving jobs.

• Dynamic scheduling phase. As a federated resource infrastructure, a

Cloud data center is a naturally dynamic environment where resources con-

tributed by different sites can join and leave through time; furthermore, issues

like unexpected network delay, resource overhead, and VM status modification

make the status of a cloud even more unpredictable. This phase solves some

problems related to the uninterrupted changing data center infrastructure

during VM submission phase. It allows for example a redistribution decision

for a VM that is in a long tail and thus a node can not be executed instantly.

Suppose the arbitrary node Hi”,j” finds that many customers applications

(VMs) wait to be served such selected customers will be sent to others nodes

(rescheduling) to improve their own VM makespans and the resource utiliza-

tion, therefore the energy consumed of the overall cloud data center. The

number of to-reschedule VMs is decided by considering the status of node

Hi”,j” itself, such as length of local waiting customers and current node over-

head. Afterwards, the algorithm finds a set of contactable remote nodes for

VM rescheduling and re-allocation. Hi”,j” sends an inform message M info
i”,j”,k”

for each to-schedule VMi”,j”,k”, and disseminates those inform messages to

all remote nodes discovered for negotiating VM rescheduling possibilities.



3.5. Decentralized approach 93

Each generated inform message M info
i”,j”,k”, contains firstly the same informa-

tion as the aforementioned request message, including estimated execution

time Di”,j”,k” , requested amount of PEs VMpe
i”,j”,k”, and job characteristic

profile. Furthermore, each inform message also includes the already made

schedule for VMi”,j”,k”, on the current node Hi”,j”, i.e., the estimated VM

finish time and the estimated energy consumed, which will be used for offer

comparison by the contacted remote nodes later. It is noteworthy that the

algorithm can be triggered by customized events as well depending on each

node’s local setting.

The selection of the node that will receive the task is the same as the submis-

sion phase except that the initiator is no longer a candidate node.

3.5.1.2 Scenario

Assuming that a cloud is comprised of interconnected nodes Hi,j , i ∈ [1, 2, ..., N ]

and j ∈ [1, 2, ..., nHi], VMi,j,k is submitted to node Hi,j . The CSAAC then leads to

the following phases and steps for job assignment and dynamic scheduling as shown

in figure 3.4.

When a new VM arrives there is a VM submission phase.

• VM Submission Phase.

– Step 1 : VMi,jk is submitted to node Hreq
i,j together with its charac-

teristic data.

– Step 2 : The initiator node Hreq
i,j generates a request message accord-

ing to the retrieved execution requirement from VMi,j,k, and broadcasts

such a message to the cloud by the employed lightweight decentralized

information system.

– Step 3 : The initiator node Hreq
i,j then waits for some time to receive

returned accept messages from other nodes of the data center.

– Step 4 : Nodes receiving the broadcasted request message check if the

required VM profile can be matched by the local resources.



94
Chapter 3. An Energy-Aware Scheduling Strategy for Allocating

Computational Tasks

– Step 5 : If yes, each candidate node computes an estimated VM

response time according to its current scheduling, their loads (load in-

creases while staying between the under-loaded threshold γ and the over-

loaded threshold ε ) and resource status, and sends the information back

to the initiator node Hreq
i,j by means of an accept message.

– Step 6 : The initiator node Hreq
i,j evaluates received accept messages

and selects the candidate node which fulfilled requirements and energy

minimized. The selected node, referred to the assignee node, is assigned

the VM by means of an assign message. A node Hass
i′,j′ is selected as the

candidate node for VMi,j,k’s delegation.

Regularly the system tries to schedule the waiting VM.

• Dynamic Scheduling Phase.

– Step 7 : The assignee node Hass
i′,j′ takes the assigned VMi,j,k and puts

it into its local list of VMs.

– Step 8 : The assignee node Hass
i′,j′ periodically picks jobs from its local

list of VMs, which have a long enough waiting time and have not been

selected recently. Afterward, for each selected VM , the assignee node

Hass
i′,j′ generates an inform message, which contains both VM estimated

completion time and energy estimated for VM execution. In our case,

VMi,j,k is selected with an assumed long waiting time.

– Step 9 : The inform message of VMi,j,k is sent over the network

using the employed low-overhead walking protocol (The walk starts at

an initial node and at each step selects randomly a minimum number of

its neighbors ).

– Step 10 : Nodes receiving the aforementioned inform message check

if the local resource and scheduling status could match the requirement

of VMi,j,k; furthermore, they also need to check whether the estimated

VM response time is short enough when compared to VMi,j,k’s current

response time upon the assignee node Hass
i′,j′ .
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– Step 11 : If the evaluation result from above step is positive, an accept

message will be generated and delivered to the assignee node Hass
i′,j′ .

– Step 12 : The assignee node Hass
i′,j′ evaluates the received accept mes-

sages according to the promised VM response time. As a result, node

Hre−ass
i′,j′,k is selected, and VMi,j,k is re-assigned by means of an assign

message.

– Step 13 : To enable tracking of VMs for the purpose of node crash

tolerance, each VM re-assignment is logged and notified to the initiator

node Hreq
i,j .

– Step 14 : To enable node weighting for future scheduling, VM comple-

tion status is sent back to the original assignee node Hass
i′,j′ and initiator

node Hreq
i,j .

– Step 15 : The final VM execution result is sent back to the initiator

node Hreq
i,j .

Regularly the scheduling restarts to optimize the metrics.

• Migration Phase. This phase comprises two steps :

– Step 1 : For a node Hi,j if ci,j > ε the node is considered as being

overloaded; requiring migration of one or more VMs from this node. The

algorithm must determine what part of the current load should be sent

to other nodes. The algorithm seeks, for all nodes in all sites, one or

more nodes, whose charge γ < ci′,j′ < ε, which can receive the VM to

migrate. If the node is found, the execution of the VM is stopped at the

source node Hi,j and continue to the destinations nodes. If the decision

is to add one or more nodes, the algorithm must determine what part of

the current load should be sent to the added nodes. Obviously, the load

to be migrated should come from nodes undergoing excessive demand

for resources.

– Step 2 : if ci,j < γ the node is considered as being underloaded;

requiring migration of all VMs from this node. The algorithm seeks, for
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all nodes in all sites, one or more nodes whose charge γ < ci′,j′ < ε which

can receive the load to migrate. If the node is found, the execution of all

VMs is stopped at the source node Hi,j and continue to the destinations

nodes.

Figure 3.4: Scenario of decentralized approach.

3.5.2 Algorithms

As a decentralized scheduling solution, the Energy Efficient Decentralized Schedul-

ing for Cloud proposed algorithm adopts the promised VM response time and the

node load as main criterions to evaluate the nodes’ capabilities. Participating nodes

need to calculate their actual load and estimated response time for a concerned VM

and bid for the VM delegation using the calculated and promised VM response

time.

Each responder node computes an estimated completion time according to its

current scheduling and resource status, calculates the necessary energy, and delivers

the information by means of an accept message. In addition, the node load is also
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added to the generated message, which can be utilized by the requester node for

responder node evaluation and selection.

The selected node is the best candidate node based on several parameters, such

as the promised time to complete, energy consumed, the node load between under-

load threshold and over-load threshold, node weight due to historical interaction

records, etc. Furthermore, during the execution of the VMs, all the time the

system verifies if there are underloaded or overloaded nodes.

A self-healing is designed similar to the intelligent feedback loop supports not

only scheduling but also re-scheduling activities. It enables CSAAC with self-healing

capabilities to allow VMs that wait a long time in a node to be re-scheduled. The

dynamic scheduling phase, but also the posibility to switch off or switch on nodes,

and especially the cooperation between nodes help to maintain system efficiency.

These properties of CSAAC algorithm constitue its self-healing system.

CSAAC provides task scheduling strategy, which dynamically migrate VMs

among computing nodes, transferring VMs from underloaded nodes to loaded but

not overloaded nodes. It balances load of computing nodes as far as possible in

order to reduce program running time.

The decision making algorithm behaves globally as follows:

• If total Vm load on the node j of site i > ε ,node is over-loaded

• If total Vm load on the node j of site i < γ , node is under-loaded

This algorithm is described in Algorithm 6. For the sake of simplicity, corner

cases such as all nodes over-loaded are not included. Selection policies take into

account migration cost. The selected node (node j′ in site i′) is the one with the

minimun energy consumed with best execution time, weighed by the migration cost

between the current position of the VM and the potential node.

To reduce the load of an overloaded node, it begins to migrate the slowest task.

Selection policy will choose the task that will stay the longest on the node.

This migration algorithm’s goal is to minimize the energy. During the execution

of the task it may happen that a node is overloaded. We decided in this case to

migrate VMs whose remaining execution time is greater. The algorithm 4 can
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Algorithm 3 Find VM with longest remaining waiting time : FindVmWait
1: Input : VMi,j // set of VMs
2: Output : VMi,j,k // VMi,j,k in node j of site i
3: D = 0
4: for VMi,j,k in VMi,j do
5: if (DW

i,j,k > D) then
6: // DW

i,j,k is the waiting time of VM k in node j of site i
7: D= DW

i,j,k

8: k′ = k
9: RETURN VMi,j,k′

Algorithm 4 Find VM with longest remaining execution time : FindVmExec
1: Input : VMi,j // set of VMs
2: Output : VMi,j,k // Vm k in node j of site i
3: D = 0
4: for VMi,j,k in VMi,j do
5: // DExec

i,j,k is the execution time of VM k in node j of site i
6: if DExec

i,j,k > D then
7: D= DExec

i,j,k

8: k′ = k
9: RETURN VMi,j,k′

Algorithm 5 Migration of VM based on sorted nodes : VerifyLoad
1: Calculate ci,j // Load of node j in node i
2: if (ci,j < γ) then
3: // In case Hi,j is under-loaded
4: for (Hi′,j′ in all nodes j′ in all sites i′ sorted by their Pmax) do
5: if Hi,j 6= Hi′,j′ and (ci′,j′ ≥ γ) and (ci,j + ci′,j′ < ε) then
6: Add Hi′,j′ to potential destination set Potential
7: Migrate all VM from Hi,j to the element in Potential set with minimum

migration cost
8: else
9: // Hi,j can be over-loaded

10: while (ci,j > ε) do
11: Calculate ci,j

12: // In case Hi,j is over-loaded
13: VMi,j,k=FindVMExec(VMi,j)
14: for (Hi′,j′ in all nodes j′ in all sites i′ sorted by the value of their maximum

power) do
15: if ((Hi,j 6= Hi′,j′) and (ci′,j′ + li,j,k < ε) then
16: Migrate VMi,j,k from Hi,j to Hi′,j′ .
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Algorithm 6 Cooperative scheduling Anti load-balancing Algorithm for cloud
(CSAAC)

1: Regularly
2: γ, under-load threshold
3: ε, over-load threshold
4: for (i = 1; i <= N) do
5: for (j = 1; j <= nHi) do
6: Calculate ci,j

7: VerifyLoad()
8: if (notemptyVMwait

i,j ) then
9: VMi,j,k”=FindVMWait(VMwait

i,j )
10: for (Hi′,j′ in all nodes j′ in all sites i′ sorted by the value of their Pmax)

do
11: if ((Hi,j 6= Hi′,j′) and (ci′,j′ + li,j,k” < ε) then
12: Migrate VMi,j,k” from Hi,j to Hi′,j′ .

find this VM. The algorithm 5 is composed of two parts. The first part (line 6 to

13), checks for underloaded node (load is less than γ) and migrates their load. The

second part (line 14 to 25) manages hotspots (ie overloaded nodes). The algorithm 6

uses underloaded and overloaded detections and avoids underloaded and overloaded

nodes. The last part (line 4 to ) corresponds the dynamic scheduling phase. This

migration algorithm’s goal is to minimize the energy. During the execution of the

task it may happen that a node is overloaded. We decided in this case to migrate

VMs whose execution time remaining is greater.

Policy of localization will then identify the node that will receive the VM with-

out exceeding its capacities (ie. its load after migration will still be under ε). So

this node will be the new destination of the VM .

The algorithm 3 is used for the dynamic scheduling phase. It allows to find the

VMs that has been waiting a long time on the list of VMs of a node.

Selection policies take into account migration cost. The selected node (node j′

in site i′) is the one with the minimun energy consumed with best execution time,

weighed by the migration cost between the current position of the VM and the

potential node. To reduce the load of an overloaded node, it begins to migrate the

VM with the longest remaining execution time. Selection policy will choose the

VM that will stay the longest on the node. Suppose that at time t1 a candidate



100
Chapter 3. An Energy-Aware Scheduling Strategy for Allocating

Computational Tasks

Figure 3.5: VM allocation with CSAAC compared to CASA. CSAAC can decide
to migrate from C to D if D is more efficient or if can lead to switch off C for
example

node C to the execution of a VM is selected (see Figures 3.5). With CASA the

execution of the job is performed by the node C. With CSAAC, at time t1 +1, the

VM migrates to the node D that meets the requirements and whose load is greater

than that of node C. If node C had no load it is more benefic in terms of energy

saving to not activate the node C if another node can execute loaded. Figures 3.5

and 3.6 show that CSAAC can produce better execution time due to migration.

3.5.3 Analysis of the algorithm

This section presents a novel decentralized dynamic scheduling approach named the

Cooperative scheduling Anti load-balancing Algorithm for cloud (CSAAC), which

is inspired by the motivation of enabling cloud scheduling for the scope of the over-

all cloud, instead of each single node. In contrast to conventional cloud scheduling

solutions, this algorithm is designed to deliver relevant scheduling events, such as

VM submission and scheduled information, to as many neighboring remote nodes

as possible. Moreover, the algorithm enables the possibility of dynamic reschedul-

ing in order to adapt to cloud data center characteristics such as instantaneity and

volatility. The Cooperative scheduling Anti load-balancing Algorithm also uses
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Figure 3.6: How migrations can reduce makespan. CSAAC compared to CASA.
CSAAC can migrate J2 when J1 finishes to reduce makespan and energy consumed.

consolidation in order to minimize energy consumed. The Cooperative schedul-

ing Anti load-balancing Algorithm is comprised of three phases, namely the VM

submission phase, dynamic rescheduling phase and migration phase. Furthermore,

the three phases of the Cooperative scheduling Anti load-balancing Algorithm are

composed of sub-scheduling algorithms, in which the VM response time and the

energy are used as critical criteria to evaluate the nergy consumed, the performance

of scheduling and rescheduling decisions. With regard to no detailed information

from participating nodes, such as length of local list of VMs and number of process-

ing elements, is required during the interactions between the metaschedulers and

local schedulers, the CSAAC is able to work together with different kinds of local

scheduling algorithms.
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3.6 Summary

It has been shown that good management of computing resources can lead to a

significant reduction of energy consumption by a system, while still meeting perfor-

mance requirements. One of the significant advancements that have facilitated the

progress in managing nodes is the implementation consilidations techniques with

switching idle nodes to power-saving modes. These technologies have enabled the

reduction of energy consumption by reducing the number of switched on nodes.

In this chapter, an algorithm, ALBA have been proposed for the problem of node

underload and overload detection as a part of dynamic VM consolidation. We have

presented first an algorithm ALBA that use consilidation techniques. Then, two

centralized and decentralized approaches with two algorithms based on ALBA :

EACAB and CSAAC. The two algorithms are based on the principle of Anti load-

balancing. EACAB is a credit-based algorithm which is centralized. Each node can

exchange VM , based on their respective credits. The algorithm CSAAC is a de-

centralized cooperative algorithm. It takes into account energy and aim to provide

energy-efficiency improvement.

Experiments and results of these two algorithms are presented in the next chap-

ter.
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4.1 Introduction

The aim of experiments is to verify that algorithms EACAB and CSAAC based on

ALBA are capable of obtaining energy-efficient schedules. The proposed System

Setup is presented in section 4.3, followed by an evaluation and analysis of the

obtained experimental results in Sections 4.4, 4.5 and 4.6. The chapter is concluded

with Section 4.7 providing a summary of results and contributions. This chapter

starts with a description of the two versions of the simulator developped Enersim.

4.2 Simulators

There have been many studies using simulation techniques to investigate behaviour

of large scale distributed systems such as the GridSim and CloudSim projects at the
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University of Melbourne and Alea developped by Dalibor et al [Klusáček 2010]. This

section investigates into extending these techniques to the behaviour of scheduling

algorithms in a cloud environment and proposes a new simulation tool that can be

used for simulating decentralized environment.

There are several desirable features of a tool similar to the one described such

as :

• Ease of setting up and executing a simulation experiment and of using user

interface which is intuitive yet comprehensive but also graphical;

• Ability to establish a simulation with high flexibility and configurability. Dur-

ing simulation, it is important to be able to enter and change parameters

quickly and easily and repeat simulations;

• Repeating experiments is a very important requirement of a simulator as the

same experiment with the same parameters should produce same results each

time the simulation is executed;

• Easily exploitable outputs are highly desirable for producing gaphical output

quickly;

• Ease of extension.

To evaluate our proposed approaches we need a simulator which has the following

capabilities : (1)it has to to take into account two metrics which are energy and

makespan; (2)basics technics required are virtualisation, migration and the possibil-

ity of switching off/on physical nodes; (3)users must be able to enter and change

algorithms quickly and easily to perform simulations and (4)it must simulate a de-

centralized cooperative cloud scheduler taking into account cloud scheduler interop-

eration, that implements a dynamic resource discovery approach on decentralized

network.

Table 4.1 summarizes the literature about various existing simulators. A remark

that might raise here is the lack of a simulator that can be considered as standard.

The simulator adapted to our work does not exist. In effect, for those who take into
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account the energy, most use a centralized appproach. Most of evaluated solutions

in cloud are usually based on centralized systems which is a limit when addressing

large scale distributed systems. Despite efforts in this direction and compared to

low level network simulation, cloud simulation does not appear to have reached the

stage aging in order to qualify for having a referent simulator recognized by all. We

will use our cloud-based simulator. It takes into account energy, manage virtual

machines for the decentralized approach, the simulator will be able to simulate

cooperative scheduling algorithms.

Taking into account some deficiencies noted in these solutions, we will try in

the following section to propose a solution of anti load-balancing leading to energy

savings in distributed systems.

Simulator Advantage Disavantage
PeerSim
[Montresor 2009]

Scaling: 106 nodes in a cyclic
mode

No model of physical network,
Light documentation

GridSim
[Buyya 2002b]

Network, grid, jobs, resources
modeled, good Documenta-
tion

Energy management not
taken into account

CloudSim
[Calheiros 2011]

Energy management taken
into account, Inherits Grid-
Sim, manages VM

Manages only the energy as a
money cost

PlanetSim
[García 2005]

Scaling: 105 nodes No statistics and no model of
physical network

SimGrid
[Casanova 2008]

Scalability, network model,
statistics supported

Energy management not
taken into account, light
Documentation

Dcworm
[Kurowski 2013]

Scalability, network model,
statistics supported

Energy management taken
into account, light Documen-
tation, centralized scheduler

MagateSimulator
[Huang 2009]

Scalability, network model,
statistics supported

Energy management not
taken into account, light
Documentation, decentralized
scheduler

Alea 3
[Klusáček 2010]

Scalability, network model,
statistics supported

Energy management not
taken into account, light
Documentation, centralized
scheduler

Table 4.1: Characteristics of a selection of existing simulators.
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• Enersim 1. In order to evaluate algorithms for centralized approach, we

implemented the centralized simulator Enersim 1. This simulator extends

ALEA simulator [Klusáček 2008] and CloudSim[Calheiros 2011].

Alea is a centralized scheduler allowing to apply and compare various schedul-

ing algorithms for cloud systems. The solution consists of the scheduler entity

and other supporting classes which extend the original basic functionality of

GridSim. Additional data structures are used to maintain information about

the resource status, the objective functions and for collection and visualiza-

tion of the simulation results. Several new scheduling algorithms and objective

functions were included as well as the support of additional job and machine

characteristics such as the machine usage, the average slowdown or the average

response time are included.

CloudSim is used to model, simulate and make experiments on designing

Cloud computing infrastructures. It can simulate the operation of a data cen-

ter where several activities such as simulating hardware and VM description

but also its creation and its destruction, the management of VM including the

allocation of physical hardware resources to each VM, take place. A signifi-

cant activity is simulated by CloudSim is the execution of user programs or

requests on the VMs. CloudSim provides a virtualization engine with exten-

sive features for modelling the creation and life cycle management of virtual

engines in a data center. Its framework is built on top of GridSim framework

also developed by the GRIDS laboratory. Most of these features are directly

used in Enersim 1. The main limits of CloudSim are a lack of cooperation

between entities and nodes which does not take into account energy.

The underlying first layer is the discrete-event simulation tool SimJava [Howell 1998].

SimJava provides a set of primitive APIs for developing and analyzing discrete-

event simulators. GridSim is built on the top of SimJava. GridSim provides

the modeling of different kinds of essential grid components, such as grid jobs

with various parameters,heterogeneous grid resources, and grid users. On the

top of GridSim we use Alea and CloudSim.
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This work concentrates on the design of a system intended for study of ad-

vanced scheduling techniques for planning VMs in data center environment.

The solution is able to deal with common problems of VM scheduling in data

center like heterogeneous resources and OS, and dynamic runtime changes

such as switching off of nodes and creation of new VMs. Enersim 1 simulator

is based on the latest Alea and CloudSim simulators which we extended to

provide a simulation environment to evaluate our research. We implemented

an experimental centralised scheduler which uses advanced scheduling tech-

niques for schedule generation and two thresholds (underload and overload

thresholds). By now dynamic first and energy-aware clouds scheduling using

anti load-balancing algorithms were tested.

The scheduler is capable to handle dynamic situation when VM appear in the

system during simulation. In this case generated schedule is changing through

time as some VMs are already switched off and new VMs are added.

EnerSim 1 brings significantly improvement of Alea and CloudSim to take

into account energy with following features:

– To support energy in CloudSim and Alea, a new type of resource entity

named Enerhost inherited from Host (in CloudSim) and GridResource

(in Alea) is added. The Enerhost.java class contains newly designed

methods to approximate resource energy consumed. Each node j in site

i has two characteristics : minimum power (pmin
i,j ) and maximum power

(pmax
i,j ).

– Similarly, a new abstract scheduler class called ReplayPolicy inherited

from DatacenterBroker in Alea and AllocPolicy in CloudSim is also

added. This class allows to randomly select a set of nodes with a given

configuration, and to execute VMs repeatedly. This class use also the

class OverReservation which allows to send a VM to a given node even

if the distribution node is already full.

– The class Vm is inherited from the class Vm in CloudSim. Virtual ma-

chines are introduced in order to simulate cloud environments. We added
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Figure 4.1: A simplified representation of Vm and EnerJob class with only the
parameters and methods added.

parameters pmin and pmax to VMs. The class VM in EnerSim 1 takes

into account energy. Figure 4.1 shows a representation of this class dia-

gram with the parameters and methods added. Vm processes EnerJob.

– The class EnerJob inherited from class Gridlet (in Alea) allows to cre-

ate a job which runs in a VM. The class job takes into account energy

and limited resources allocation. We added a method setResourcePa-

rameter which sets the resource parameters for which this job is going

to be executed. Parameters are the node ID, the pmin and the pmax

the node and the cost running this GridResource per second. Another

method is getProcessingEnergy which gets the total energy of processing

or executing this job. Figure 4.1 shows the class diagram.

– Allocpolicy, inherited from VmAllocationPolicy class in CloudSim, is re-

sponsible of allocation of VM to nodes. This policy takes into account

several hardware characteristics, such as number of CPU cores, CPU

share, and pmin
i,j and pmax

i,j of physical node j in site i, that are allocated

to a given VM instance. The proposed algorithm EACAB in Chapter 3

is implemented in this class.
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– The classes Migration and OverReservation are added. Migration mi-

grates tasks. The class OverReservation allows to specify which node

will execute a given task. These classes are used by Allocpolicy to im-

plement algorithms presented in sections 3.3 (ALBA) and 3.4 (EACAB).

– Enersim 1 also allows users to export results into cvs. or xls. format and

also generating of graphs.

– Enersim 1 introduces a comprehensive GUI which can be used to config-

ure the simulation.

Figure 4.2 shows the architecture of the simulator Enersim 1.

Figure 4.2: Layered architecture of Enersim 1

The class diagram on figure 4.3 describes the main set of classes of Ener-

sim 1. These classes are responsible for the modelling and execution of the

simulations. The GUI is designed loosely coupled from this main simulation

framework and hence shown as a package in the main diagram. The class

DatacentarBroker of CloudSim performs a dual role in VM management and
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routing traffic to data centers. In EnerSim 1, the two roles are performed by

VM management (CloudSim) and DatacenterBroker (Alea).

Figure 4.3: Class diagram showing the main classes of Enersim 1

Figure 4.4 present main screen of Enersim 1.

An advantage of Enersim 1 is that future simulators which are inherited do
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Figure 4.4: EnerSim 1 EnerSim and 2 main screen

not require modification of existing resource. But the limit is that it can

simulate only centralized system.

• EnerSim 2. The Enersim 2 simulator solves the lack of Enersim 1 to

simulate decentralized algorithms. EnerSim 2 extends MaGateSim and En-

ersim 1 and is selected as the simulator for experimental evaluation for the

decentralized approach. EnerSim 1 has been extended with the ability to han-

dle: (1)simulation of decentralized algorithms and (2)cooperative scheduling

algorithms. MagateSim brings decentralized and cooperatives properties. Ma-

gateSim is a set of classes extending GridSim. Among the classes inherited

from MagateSim we used mainly classes in modules Kernel Module (KM),

Community Module (CM), Local Resource Management systems (LRM) and

External Module (EM). KM is responsible for Magate self-management. It

is related to three other modules. In these modules, the class ModuleCon-

troller is in charge communication during the scheduler lifecycle, including :
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job submission/scheduled/completion events, community knowledge updates,

system self-inspection requests. An other class in the KM is MatchMaker.

This class evaluates the adopted policy with knowledge of local resource ca-

pabilities, and decides whether the job could be executed locally or an appro-

priate remote nodes from the local cached direct neighbors list, or sends the

propagated queries to the EM, in order to discover potential suitable remote

nodes from the grid community directly. EM contains other features such

as the management of neighboring nodes and internet services. CM allows

for interoperability between other scheduleurs and facilitates the work (job)

exchange among the interconnected grid community. LRM performs tasks

allocations and tasks management on the local nodes.

EnerSim 2 extends MaGateSim by adding the power consumption and virtual

machine (mainly their migration), the latter inherited from Enersim 1. The

simulator offers computing resource which takes into account energy. Our

simulator is designed to be a decentralized cloud scheduler that emphasizes

on cloud scheduler interoperation, and complemented by a dynamic resource

discovery approach on decentralized network. In Enersim 2 we changed classes

that manipulate resources. Here we use the resources defined in Enersim 1,

which take into account energy.

– Multiple inheritance in java is prohibit. Instead multiple inheritance of

interfaces is proposed. In EnerSim 2 we added the interface IJOB which

is implemented by the class Job of MagateSim. Thus, we create the new

class EnerJobII which inherit from the class EnerJob of Enersim 1 and

implement the interfase IJOB (see class in figure 4.5).

– We added the class simResourceInfo that gives nodes’ informations (see

fig. 4.6). This class stores dynamic information about each resource. e.g.

prepared schedule for this resource, list of descriptions of jobs in execu-

tion. It also provides methods to calculate various parameters based

on the knowledge of the schedule and resource status e.g. expected

makespan, energy.
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Figure 4.5: Class diagram for EnerJob in Enersim 2

– The class AdvancedPolicy extends the class AllocPolicy of Enersim 1.

This class implement algorithms presented in our decentralized approach

(CSAAC, FindVmWait, FindVmExec and VerifyLoad).

– GUI is the same in both simulators.

The conceptual architecture of the Enersim 2 is shown below. Enersim 2 is

built on the top of Enersim 2 and MagateSim. Underlying layers, which are

not shown in the figure, are the same as those presented in Enersim 1.
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Figure 4.6: Class diagram for simResourceInfo and AdvancedPolicy in Enersim 2

Figure 4.7: Layered architecture of Enersim 2 simulator.

4.3 System Setup

To verify our algorithms we initially used Enersim 1 to test the EACAB. Then, to

compare the two algorithms, EACAB and CSAAC, we used the simulator Enersim

2.

4.3.1 Simulation environment with Enersim 1

• Data center : 100 clusters of 100 nodes each. Each node speed is randomly

chosen between 1GHz and 3.06GHz
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• Tasks : 1000 randomly generated tasks

– Duration between 10 and 40s

– Requested load between 10% and 100%

• Node shutdown and wakeup energy are assumed to be zero. In section 3.2.2

we defined the classical linear model of power consumption in function of

load. When nodes are being switched off or wakeup, they have no load so

their energy is zero.

• A node j in site i has two different power states for each core: Switched on

and switched off. While switched on, power consumption is linear in function

of load between Pmin
i,j and Pmax

i,j . Those values are different for each node and

are respectively between 75 and 150W, and 200 and 250W.

The First Fit algorithm for the first allocation problem is the well-known map-

ping algorithm Borgetto et al. [Borgetto 2012] modified by adding a power-aware

component to the algorithm. In the following we compare EACAB with Dynamic

First Fit (FF) which is a dynamic First Fit where nodes are sorted according to

their maximum power consumption. FF allocates each VM to the first node on

which it fits. Borgetto et al. added a power-aware component to the algorithm FF,

and they allocate first on the PM that will have the smallest maximum power con-

sumption. FF with migration use a re-allocation phase : choose underloaded PM,

distribute its load in First Fit fashion. With migration all VMs are re-allocated,

while without migration only the arriving VM is allocated.

4.3.2 System Setup for Enersim 2 simulator

We use Grid5000 workload (Date: 1 Apr. 2010, full load submitted tasks: 1020195)

[Grid50002010 2010], resource topology for Grid5000 , 26 sites, 3194 nodes (see

table 4.2). Nodes are equipped with Intel Xeon and AMD Opteron processors.

Muti-core is not considered. Service nodes and storage nodes are not considered.

• The workload trace archive and resource deployment topology of the Grid5000
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Table 4.2: Resource topology for Grid5000. A=AMD and I=Intel.
sites AMD INTEL TOTAL NODE NumOfSite
Orsay 684 x 684 60(A), 372(A), 252(A) 3
Grenoble x 68 68 68(I) 1
Lyon 252 x 252 112(A), 140(A) 2
Rennes x 376 376 50(I), 128(I), 66(I),132(I) 4
Sophia 310 90 400 98(A), 112(A), 100(A),90(I) 4
Bordeaux 322 102 424 96(A), 102(I), 186(A),40(A) 4
Lille 198 92 290 100(A), 40(A), 52(A), 92(I) 4
Nancy x 424 424 184(I), 240(I) 2
Toulouse 276 x 276 116(A), 160(A) 2

2042 1152 3194 26

[Grid50002010 2010] is selected to organize the experiment of the distributed

algorithm and the comparision of the EACAB and CSAAC.

• We assume that nodes have two different power states for each core : Switched

on and switched off. While switched on, the power consumption depends on

load, between Pmin
i,j and Pmax

i,j . Those values are different for each node and

are respectively between 75 and 150W, and 200 and 560W as measured on

Grid5000.

4.4 Centralized approach : Experimental results

A part of this work concentrates on the design of a system intended for study

of advanced scheduling techniques for planning various types of tasks in Cloud

environment. The solution is able to deal with common problems of task scheduling

in cloud like heterogeneity of tasks and resources, and dynamic runtime changes

such as arrival of new tasks.

In order to evaluate the gains of the EACAB compared to classical algorithm

Dynamic First Fit, we implemented our algorithm in Enersim 1.

In this subsection, we describe the simulation study performed to evaluate the

performance of our algorithms in terms of energy minimization as well as the exe-

cution time and the number of migrations.

The first observation is that for three algorithms EACAB, dynamic First Fit
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Figure 4.8: Simulation with Enersim 1 : Energy of EACAB compared to dynamic
first fit with sorted nodes. Lower is better

with no migration and dynamic First Fit with migration. The algorithm EACAB

consumes the least energy while Dynamic First Fit algorithms consume the most

energy (see figure 4.8). The second observation is that this algorithm is able to

reduce the energy consumption by 15 percent to 35 percent when task increases

from 350 to 1000. EACAB checked regularly if not exite overloaded or under-

loaded node and migrates VMs to avoid the VMs slowdown or to have underloaded

PM. FF does not verify the overload nodes.

Figures 4.9 and 4.10 show respectively the maximum and median number of

switched on nodes as a function of task number. When number of tasks increase

then the number of nodes switched on also increase, leading to a higher power

consumption. This is particularly true if there is no migration after the initial

placement of tasks. Hence, the gain of our algorithm increases power-wise with the

number of tasks because migration is activated. The number of migrations is low in

both EACAB and dynamic First Fit at the start of the experiment. In the case of

the consolidation, less nodes are switched-on because we can adapt to the workload

dynamism. The median has the same behavior but the maximum number of nodes

is 50%. The observed gain increases with the number of tasks and becomes constant

when nodes are saturated.

The good results of the EACAB comes from the fact that with the increase of

the number of tasks, it has more possibilities to migrate tasks. It can then better
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Figure 4.9: Simulation with Enersim 1 : Maximum nodes switched on with EACAB

allocate tasks on nodes, reducing the number of switched-on nodes.

Due to the thresholds of the EACAB, it would be possible to reduce further the

number of switched on nodes but it would overload remaining nodes. Those nodes

would become hot points and would have a negative impact on cooling. In order

to prevent overloading, the EACAB adjusts load as shown in Figure 4.11. If the

number of tasks increases, it will reduce the mean actual load they will obtain.

Figure 4.12 shows that our algorithm EACAB is better than classical Dynamic

First Fit regardless of the threshold when the number of tasks is large.

The choice of γ is still important. There is an energy consumption difference of

10% between the best and the worst value. The worst value (100 jobs) is 10% more

efficient than dynamic first fit, the best one (300 jobs) is 50% more efficient.

For small number of tasks, energy consumption increases because of the many

migrations.

The EACAB has the shortest execution time when the number of jobs increases.
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Figure 4.10: Simulation with Enersim 1 : Median nodes switched on with EACAB

Figure 4.11: Simulation with Enersim 1 : Node mean load with EACAB
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Figure 4.12: Simulation with Enersim 1 : Impact of threshold in energy gain with
the EACAB

Table 4.3: Makespan of algorithms compared to First Fit with sorted nodes and
migration

Number of Jobs
Algorithm 100 200 300 400 500 600 700 800 900 1000

Dynamic first Fit 265.53 374.4 580.37 631.22 615.04 870.55 813.83 1006.31 853.68 1270.73
EACAB 230 225.81 321.95 399.45 495.09 589.84 565.48 872.3 738.43 815.65

The result implicates that the scheduling EACAB algorithm can leverage migrations

to achieve high performance and energy efficiency. Table 4.3 an Figure 4.13 show

that our algorithm produces faster scheduling regardless of the number of jobs.

Whatever the number of jobs EACAB makespan is lower than Dynamic First Fit.

This can be justified by the fact that EACAB uses two thresholds for nodes load

and thus avoids the jobs slowdown. The job slowdown may be due to overloading

node.

From Figure 4.10 and 4.13, we understand the difference in Energy Consumption

shown in Figure 4.8 between EACAB and Dynamic First Fit. This comes from two

factors : less nodes are used, and for a smaller time.

4.5 Decentralized approach : Experiments and Results

In this subsection, we describe the simulation study performed to evaluate the per-

formance of our algorithms in terms of energy minimization as well as the execution
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Figure 4.13: Simulation with Enersim 1 : Makespan with EACAB compared to
dynamic first fit (FF)

time and the number of migrations for the CSAAC. The proposed algorithms are

evaluated by extensive simulations using the EnerSim 2 simulator.

In order to share the tasks submitted from a local scheduler to other scheduler

within the same data center community, a set of community scheduling relevant

parameters are evaluated and discussed to address various task delegation scenarios

between different scheduler. The decentralized approach schedulers are driven to

cooperate with each other, to provide intelligent scheduling for the scope of serving

the data center community as a whole, not just for a single node individually.

In the following we compare our algorithms with the CASA with energy that

produces energy-efficient schedules. CASA with energy is the version of CASA

which takes into account the energy (see section 2.4.4 for details).

The first observation is that for two algorithms, the CSAAC consumes the least

energy while the CASA algorithm consumes the most energy (see figures 4.14 and
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Figure 4.14: Energy of CASA with energy compared to the CSAAC with sorted
nodes by pmax. Lower is better

Figure 4.15: Energy gain of CSAAC compared to CASA with sorted nodes by
pmax. Lower is better
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4.15), when the number of jobs T > 300. For a small number of tasks our algorithm

CSAAC leads to a significant energy consumption increase. The second observation

is that the CSAAC is able to reduce the energy consumption by 5 percent to 80

percent when job increases from 300 to 1700. Figure 4.16 demonstrates the number

of migrations incurred by 1700 jobs. An obvious observation is that migrations are

beneficial to save energy. The second phase of our algorithm calls into question

the choices and therefore modifies the node loads over time. If at any time the

tasks are finished and that there are several machines under loaded, they can be

consolidated. This is not the case for algorithms which never calls into question the

allocation once the jobs are running. The impact of migration, however, may not

be large enough to dominate the total energy gain when the number of jobs is less

than 300.

Figure 4.16: CSAAC : Migration

Figure 4.17 shows maximum number of switched on nodes. In CSAAC, when

the number of jobs increases, the number of nodes switched on does not increase

automaticaly. Sometimes a very powerful server is turned on causing the migration

of VMS from several other servers to it. As the cloud is not saturated redistribution

of tasks is often done. Whith CASA, when the number of jobs increases then the

number of nodes switched on also increases, leading to a higher power consumption.
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Figure 4.17: Maximum node switched on with the CSAAC compared to CASA

This is particularly true if there is no migration after the initial placement of tasks.

Hence, the gain of our algorithm CSAAC increases power-wise with the number of

tasks because migration is activated. Computing resources are fully used in both

cases at the start of the experiment. In the case of the consolidation, less nodes are

switched-on because we can adapt to the workload dynamism.

The CSAAC on the other hand, has the shortest execution time when the num-

ber of jobs increases. The result implicates that the scheduling algorithm such as

CSAAC can leverage interconnects with migrations to achieve high performance and

energy efficiency. Figures 4.18 shows that our algorithm produces faster scheduling

regardless of the number of jobs. The good results of the CSAAC comes from the

fact that with the increase of the number of tasks, it has more possibilities to mi-

grate tasks. It can then better allocate tasks on computing resources, reducing the

makespan and increasing energy gain. Therefore, our algorithm CSAAC is able to

obtain better performance.

Due to the thresholds of the CSAAC , it would be possible to reduce further the

number of switched on nodes but it would overload remaining nodes. Those nodes
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Figure 4.18: Makespan of CSAAC compared to CASA with sorted nodes by pmax.
Lower is better

Figure 4.19: comparison between the CSAAC and CASA. Standard deviation σ
of node load

would become hot points and would have a negative impact on cooling. In order

to prevent overloading, the CSAAC adjusts load. Also the figure 4.19 shows how

widely node loads are dispersed from the average value (the mean). In previous
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results (figures 4.15 and 4.16), the CSAAC is in the lead in terms of energy gain

and execution time, since in this algorithm there is cooperation between schedulers

which allows an efficient consolidation in cloud. Figure 4.19, shows the standard

deviation σ of the nodes load which confirms the good distribution of the load after

consolidation. Thus figure 4.19 shows that the CSAAC gives the best standard

deviation compared to CASA, which is an indication of the good predictability of

the performance of the CSAAC.

4.6 Decentralized approach vs Centralized approach

Decentralized algorithms solve the main shortcomings of centralized algorithms al-

gorithms such as scalability, fault tolerence and bottlenecks which can significantly

degrade performance, the adequacy of the cloud computing environment, autonomy.

However, we note two main disadvantages are the difficulty of implementation and

selfish comprtement can have some nodes .

In this section, we compare two classes of proposed scheduling algorithms, cen-

tralized and decentralized. In centralized scheduling, one cloud scheduler maintains

a complete control over the clusters. All the jobs are submitted through the cloud

scheduler. In contrast, in decentralized scheduling, organizations maintain (limited)

control over their schedules. Jobs are submitted locally, but they can be migrated

to another cluster, if the local cluster is overloaded. The possibilities of migration

are, however, limited, so that migrated jobs do not overload the node system. The

aim of this section is to compare energy consumed by EACAB and CSAAC. Using

EnerSim 2 simulation environment, we simulate both algorithms.

We run the simulation using a Grid5000 workload and measure the amount

of energy consumption of the placement and the average execution times for both

algorithms (i.e. centralized and decentralized). To derive the actual energy savings,

the amount of energy spent for VM placement was estimated by the formula defined

in section 3.2.

The final simulation results are depicted in Table 4.4. The gain in energy and

makespan does not depend on the numbers of jobs but mostly of the distribution
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of jobs between nodes.

Table 4.4: Simulation results. (Stdev=standard deviation)
Jobs Approach makespan Makespan

gain (%)
Makespan
Stdev

energy Energy
gain (%)

Energy
Stdev

cent 48770 6491 16358.5 10363419500 Dec 48984 −0.44 5574 16252.9 0.65 10475850
cent 102089 40225 34473.4 567936031000 dec 100859 1.20 40676 31628.8 8.25 51366829
cent 117143 24348 45480.4 1045490391500 dec 130734 −11.6 61778 47263.9 −3.9 118552002
cent 153386 51215 58819.5 1549630192000 Dec 143047 6.74 39176 63349.97 −7.7 180703187
cent 143977 37093 56716.3 1294078872500 Dec 143541 0.3 36334 56108.85 1.07 116130251
cent 250457 237465 61635.4 1679526103000 Dec 211032 15.72 191168 56993.7 7.5 133578369
cent 235614 215901 63370.7 1645127613500 Dec 202696 13.97 162140 55093.6 13.06 130973378
cent 221526 192048 54071.2 1165546234000 Dec 233452 −5.38 223754 60270.2 −11.5 157261329
cent 241048 222470 57983.4 1313205664500 Dec 207189 14.05 173065 59478.3 −2.57 175986327

Figure 4.20: EACAB vs CSAAC : Energy



128 Chapter 4. Experiment results

Figure 4.21: EACAB vs CSAAC : Migration

Figure 4.22: EACAB vs CSAAC : Maximum nodes switched on

We performed series of tests, comparing EACAB and CSAAC. Generally, the

CSAAC schedules slightly worse in terms of makespan than the EACAB. Typical

results of experiments are presented in Figures 4.20,4.21,4.22 et 4.23. In Figure

4.20 it is easy to notice that energy consumed by the distributed algorithm is

comparable to centralized strategy for low number of jobs. These poor results
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Figure 4.23: EACAB vs CSAAC : Makespan

are caused by low number of migrations since majority of jobs can be executed

without exceeding their due dates. This situation changes for higher loads when

number of migrations is increased and the distributed algorithm outperforms the

centralized one some time. We achieved similar results for centralized algorithm

which use migration and anti load-balancing techniques. When a cluster load is

below the under-loaded threshold, centralized and decentralized algorithm are able

to migrate jobs to more-loaded clusters and switch off under-loaded cluster. In

this case, performance measures and energy depend strongly on the collaboration

of less-loaded clusters. When their cooperation is too low the system as a whole

starts to be inefficient, although the performance of the less-loaded clusters is not

affected. Consequently, we consider that there must be some minimal cooperation

that results from a cloud agreement. As in real systems the job stream changes,

this minimal cooperation can be also interpreted as an "insurance" to imbalance the

load.

From the experiments above, we can get the obvious conclusion that both the

EACAB and CSAAC can reduce energy consumed of data centers. Figure 4.23

above shows the execution time for all tasks and both schedulers. We can see that

the two algorithms have the same behavior.
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4.7 Conclusion

In this chapter we have presented the two simulators (EnerSin 1 and EnerSim 2)

used. We also evaluate the EACAB and CSAAC which are energy-efficient IaaS

cloud management systems for large-scale virtualized data centers.

Overall, the EACAB can compute allocations effectively with an important

energy gain. Experiments showed that with this algorithm energy gain can achieve

20% over standard algorithms.

The CSAAC has been extensively evaluated with the Grid’5000 workload and

shown to be scalable and energy-efficient. Particularly, our experimental results

have shown that: (1) the CSAAC is capable of obtaining energy-efficient sched-

ules using less optimization time;(2)application performance is not impacted by

performing migration using under load and under load thresholds; (3)the system

scales well with increasing number of resources thus making it suitable for managing

large-scale virtualized data centers; (4) The anti load-balancing technique used by

the two approaches achieve substantial energy savings. (5) when jobs > 300, the

CSAAC is able to reduce the average energy consumption by about 10 percent to

80%. (5)the execution time of jobs is also reduced by 5 percent to 25 percent when

number of jobs > 300, when compared to the CASA algorithm

Finally we have compared the two algorithms and can get the obvious conclusion

that both EACAB and CSAAC can reduce energy consumed of data centers.
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This thesis investigates VMs scheduling in cloud in developing solution ap-

proaches to the Cloud energy consumption problem. Our objective is to design

energy aware clouds scheduling using anti load-balancing algorithm capable of co-

ordinating the scheduling behaviors of independent entities in the Cloud. The

developed solution mainly targets to reduce energy consumed based on centralized

and decentralized scheduling that is adequate for the Cloud. This chapter summa-

rizes the main contributions of this work, highlights our conclusions, and presents

some future research directions.

5.1 Contributions

Cloud Computing has become another buzzword after Web 2.0. However, there are

dozens of different definitions for Cloud Computing and there seems to be no consen-

sus on what a Cloud is. On the other hand, Cloud Computing is not a completely

new concept; it has an intricate connection to the relatively new but thirteen-

year established Grid Computing paradigm, and other relevant technologies such

as utility computing, cluster computing, and distributed systems in general. Cloud

computing has recently emerged as a new computing paradigm which allows cus-

tomers to lease services based on the pay-as-you-go model. Customers are charged

for only what they use. To support the customers growing service demands cloud



132 Chapter 5. Conclusion

providers are now building an increasing number of large-scale data centers. Man-

aging such data centers is a challenging task as it involves the design of novel cloud

management frameworks and algorithms which are not only able to operate at scale

but also lower the data center energy consumption during periods of low resource

utilization. This thesis has focused on the IaaS cloud service model whose goal

is to offer compute infrastructure by provisioning VMs on-demand. Particularly,

in this thesis we have investigated the challenge of designing, implementing, and

evaluating an energy-efficient task placement system for private clouds. In order to

achieve this goal, Chapter 2, has first introduced the context of this work, namely

server virtualization, scheduling, cloud computing and energy management in data

centers. Then, it has reviewed the related work on the design and implementation

of scalable, and energy-efficient IaaS cloud management systems and highlighted

their limitations. Based on the lessons learned this thesis has proposed the follow-

ing four novel contributions which have been analyzed and designed in Chapter 3

:

• Anti load-Balancing algorithm. In this thesis, we analyzed and devel-

oped a scheduling model which is the inverse of the load balancing operation.

This model concentrates work in fewer nodes, idling other nodes that can be

turned off. This load concentration or anti load-balancing saves the power

consumed by the powered-down nodes, but can degrade the performance of

the remaining nodes and potentially increase their power consumption.

• Energy-aware cloud scheduling using Anti load-Balancing algorithm.

In Chapter 3, a centralized dynamic VM consolidation algorithm has been

analysed to obtain significantly energy gain and insights into designing online

algorithms for dynamic VM consolidation. The centralized approach consol-

idates VMs on a subset of nodes judiciously chosen depending on the char-

acteristics and state of nodes. This algorithm can be employed in practical

settings. Overall, the proposed algorithm can compute allocations effectively

with an important energy gain. We argue in this work that energy savings are

achieved by continuous consolidation of VMs according to current utilization
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of resources and by avoiding hot spots. The chapter has concluded with a dis-

cussion of taking into account performance in the algorithm. The utilisation

of two thresholds of the CPU utilization defines the underload and overload

states. For instance, a server can be considered to be overloaded when its

utilization exceeds 80%. Such tuning is useful in cases when the application

performance is known to degrade after a certain level of CPU utilization.

• Cooperative scheduling Anti load-Balancing Algorithm in Cloud.

Chapter 3 has proposed a distributed dynamic VM consolidation consisting

in splitting the problem into 4 sub-problems: (1) host underload detection;

(2) host overload detection; (3) VM selection; and (4) VM placement. Split-

ting the problem allows executing algorithms for the first 3 sub-problems in

a distributed manner independently on each compute node. Local managers

eliminate the single point of failure and making the system completely dis-

tributed and decentralized. The model was analyzed and derived based on

the structure and the characteristics of the Cloud. Comparing with other

research work on the Cloud scheduling problem modeling, our model leads to

a family of heuristics that perform well in terms of energy savings while still

leading to good task performance.

Then we distributed this algorithm, so that each cluster can exchange tasks,

based on their respective loads. We presented and evaluated this decentralized

approach for cloud. This algorithm is based on the principle of CASA. It takes

into account energy and provides energy-efficiency improvement compared to

classical load unbalancing algorithms. The decentralized approach schedulers

are driven to cooperate with each other, to provide intelligent scheduling for

the scope of serving the grid community as a whole, not just for a single grid

node individually. Our main problem was to optimize energy consumption

given task performance constraints. Energy consumption is to be taken in a

broad way as we try to prevent hot spots to reduce impact on cooling. Overall,

the proposed approach can compute allocations effectively with an important

energy gain.
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We have compared the CSAAC to CASA over a range of realistic problem

instances using simulation in chapter 4. The decentralized approach parame-

ters lead to a family of heuristics that perform well in terms of energy savings

while still leading to good task performance. The proposed approach can

compute allocations effectively with an important energy gain.

The simulation results in chapter 4 showed that our algorithm is capable of

obtaining energy-efficient schedules using less optimization time. In particu-

lar, we showed that for the case when jobs > 300, our algorithm is able to

reduce the average energy consumption by about 10 percent to 80 percent. At

the same time, the execution time of jobs is also reduced by 5 percent to 25

percent when number of jobs > 300, when compared to the CASA algorithm.

The experimental results have exhibited significant improvement in terms of

scheduling for energy savings.

The conclusions drawn from these results indicate that the proposed ap-

proaches of scheduling requires more work, but are otherwise promising with

regards to energy efficiency.

• Simulators. We developed for the centralized approach the EnerSim 1 sim-

ilator which is described in chapter 4. EnerSim exends ALEA and CloudSim.

Secondly in order to simulate the cooperative scheduling, we extended Ma-

GateSim by adding properties that allow it to take into account energy and

migration. We have also performed an implementation of CASA within the

context of current developments in cloud computing. The Enersim 2 extends

MagateSim and Enersim 1.

The implementation of Enersim 2 allowed us to compare the centralized ap-

proach and decentralized approach. Thus, Chapter 4 has proposed experi-

ments consisting in comparing the centralize approach and the distributed

dynamic VM consolidation. Experiments conducted on a Grid5000 topology

have shown that dynamic VM consolidation is able to reduce energy consump-

tion by the compute nodes by up to 30
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5.2 Perspectives

As we just discussed in the section 5.1, the obtained results gave us enough moti-

vation to consider following as future research topics to be investigated as a contin-

uation of this Ph.D. thesis.

We plan to extend the heterogeneity of our performance model to other parts

of IaaS cloud computing centers. We would like to support full heterogeneity in

VMs, PMs and user tasks; more specifically, VMs are required to be varied in terms

of memory, disk, CPU core and CPU; PMs may differ in computation capacity,

networking, memory, disk, Graphics Processing Unit (GPU) and hypervisor (VMM)

capabilities; user tasks may request various number of resources for different amount

of time (i.e., different probability distributions for task service time).

Despite substantial contributions of the current thesis in energy-efficient dis-

tributed dynamic VM consolidation, there are a number of open research challenges

that need to be addressed in order to further advance the area.

VM Network Topologies

In virtualized data centers VMs often communicate with each other, establishing

virtual network topologies. However, due to VM migrations or non-optimized al-

location, the communicating VMs may end up hosted on logically distant physical

nodes leading to costly data transfers between them. If the communicating VMs are

allocated to hosts in different racks or enclosures, the network communication may

involve network switches that consume significant amounts of energy. To eliminate

this data transfer overhead and minimize energy consumption, it is necessary to ob-

serve the communication between VMs and place the communicating VMs on the

same or closely located nodes. In particular, to provide efficient reallocations, it is

required to develop power consumption models of the network devices and estimate

the cost of data transfer depending on the traffic volume. Moreover, VM migrations

consume additional energy and have a negative impact on the performance. The

VM placement algorithm has to ensure that the cost of migration does not exceed

the benefits.

Dynamic threshold
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Fixed values of the utilization threshold are unsuitable for an environment with

dynamic and unpredictable workloads, in which different types of applications can

share a physical node. The system should be able to automatically adjust its be-

havior depending on the workload patterns exhibited by the applications. It will be

interresting to present a heuristic algorithm for auto-adjustment of the utilization

threshold based on statistical analysis of historical data collected during the lifetime

of VMs.

Dynamic and Heterogeneous SLAs

Cloud data centers need to provide strict QoS guarantees, which are documented

in the form of SLAs. Resource provisioning within a data center directly influences

whether the SLAs are met. Current Cloud data centers host applications from

clients distributed globally. These clients have very different requirements, which

may also vary over time. For example, an organization using Cloud services may

require tighter response time guarantees in day time than in night time. To address

the problem, it is necessary to develop algorithms that exploit time variation in

SLAs of the users to minimize the number of physical servers required.

Currently, to simplify management, resources in Cloud data centers are allo-

cated to clients depending only on that client’s SLAs, regardless of the SLAs of

other users. The intrinsic differences among various SLAs can make huge differ-

ences in the amount of resources allocated to each user. Although heterogeneous

requirements of users make scheduling and VM consolidation algorithms complex,

they can be exploited to improve energy-efficiency. It is important to devise and

analyze algorithms that make use of such heterogeneity. Moreover, to meet the

requirements of large-scale Cloud data centers, it is necessary to design a solution

scalable to handling thousands of users.

Thermal-Aware Dynamic VM Consolidation

A significant part of electrical energy consumed by computing resources is trans-

formed into heat. High temperature leads to a number of problems, such as the

reduced system reliability and availability, as well as the decreased life time of the

hardware. In order to keep the system components within their safe operating tem-

perature and prevent failures and crashes, the emitted heat must be dissipated.
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The cooling problem becomes extremely important for modern blade and 1U rack

servers that pack computing resources with high density and complicate heat dissi-

pation. By laws of physics, all the power has to be convert into heat. According to

[Carlson 2012] a pair of microprocessors mounted on a single motherboard can draw

200-400 watts or more of power. According to a 2008 Gartner report [Wang 2008],

50 percent of data centers will soon have insufficient power and cooling capacity to

meet the demands of high-density equipment. The cooling cost is one of the major

contributors of the total electricity bill of large data centers. Therefore, apart from

the hardware improvements, it is essential to address the problem of optimizing the

cooling system operation from the resource management side. One of the ways to

minimize the cooling operating costs is to continuously monitor thermal state of

physical nodes and reallocate VMs from a node when it becomes overheated. In

this case, the cooling system of the offloaded node can be slowed down allowing

natural heat dissipation. Moreover, there has been research work on modeling the

thermal topology of a data center that can lead to more efficient workload place-

ment [Johnson 2009]. Therefore, it is necessary to investigate how and when to

reallocate VMs to minimize the power drawn by the cooling system, while preserv-

ing safe temperature of the resources and minimizing the migration overhead and

performance degradation.
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Résumé

La multiplication de l’informatique en nuage (Cloud) a abouti à la création de cen-

tres de données dans le monde entier. Le Cloud contient des milliers de nœuds de

calcul. Cependant, les centres de données consomment d’énorme quantités d’énergie

à travers le monde estimées à plus de 1,5% de la consommation mondiale d’électricité

et devrait continuer à croître. Une problématique habituellement étudiée dans les

systèmes distribués est de répartir équitablement la charge. Mais lorsque l’objectif

est de réduire la consommation électrique, ce type d’algorithmes peut mener à avoir

des serveurs fortement sous chargés et donc à consommer de l’énergie inutilement.

Cette thèse présente de nouvelles techniques, des algorithmes et des logiciels pour la

consolidation dynamique et distribuée de machines virtuelles (VM) dans le Cloud.

L’objectif principal de cette thèse est de proposer des stratégies d’ordonnancement

tenant compte de l’énergie dans le Cloud pour les économies d’énergie. Pour attein-

dre cet objectif, nous utilisons des approches centralisées et décentralisées. Les con-

tributions à ce niveau méthodologique sont présentées sur ces deux axes. L’objectif

de notre démarche est de réduire la consommation de l’énergie totale du centre

de données en contrôlant la consommation globale d’énergie des applications tout

en assurant les contrats de service pour l’exécution des applications. La consom-

mation d’énergie est réduite en désactivant et réactivant dynamiquement les nœuds

physiques pour répondre à la demande des ressources. Les principales contributions

sont les suivantes:

• Ici on s’intéressera à la problématique contraire de l’équilibrage de charge. Il

s’agit d’une technique appelée Anti Load-Balancing pour concentrer la charge

sur un nombre minimal de nœuds. Le but est de pouvoir éteindre les nœuds

libérés et donc de minimiser la consommation énergétique du système.

• Ensuite une approche centralisée a été proposée et fonctionne en associant une

valeur de crédit à chaque nœud. Le crédit d’un nœud dépend de son affinité

pour ses tâches, sa charge de travail actuelle et sa façon d’effectuer ses commu-

nications. Les économies d’énergie sont atteintes par la consolidation continue

des machines virtuelles en fonction de l’utilisation actuelle des ressources, les
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topologies de réseaux virtuels établis entre les machines virtuelles et l’état

thermique de nœuds de calcul. Les résultats de l’expérience sur une extension

de CloudSim (EnerSim) montrent que l’énergie consommée par les applica-

tions du Cloud et l’efficacité énergétique ont été améliorées.

• Le troisième axe est consacré à l’examen d’une approche appelée "Cooperative

scheduling Anti load-balancing Algorithm for cloud". Il s’agit d’une approche

décentralisée permettant la coopération entre les différents sites. Pour valider

cet algorithme, nous avons étendu le simulateur MaGateSim.

Avec une large évaluation expérimentale d’un ensemble de données réelles, nous

sommes arrivés à la conclusion que l’approche à la fois en utilisant des algorithmes

centralisés et décentralisés peut réduire l’énergie consommée des centres de données.

Mots clés: Energie, Heuristique, Machine virtuelle, Cloud, Migration, consolida-

tion
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Ce chapitre présente le contexte de la recherche exploré dans cette thèse. Il

commence avec les motivations fondamentales sur les organisations décentralisées

et coordonnées des systèmes Grille/Informatique en nuage (Grille/Cloud), y compris

les systèmes d’allocation des ressources. Le chapitre fournit ensuite une discussion

sur quelques problèmes de la recherche, les objectifs de ce travail et la méthodologie.

1.1 Motivation

Le cloud computing a émergé comme un nouveau modèle d’affaires de calcul et de

stockage basé sur le modèle sans forfait ( pay-as-you-go model), d’accès à des quan-

tités potentiellement importantes de capacités de centres de données distants. La

facturation des clients dépend des services qu’ils ont consommées jusqu’à présent.

Un services particulier de cloud offert par les fournisseurs de cloud, qui a gagné

beaucoup d’attraction au cours des dernières années est l’infrastructure comme un

service (IaaS). Dans les IaaS de cloud, des ressources de calcul et de stockage sont

provisionnées sur demande par les fournisseurs de cloud. De nombreux fournisseurs

de cloud comme Amazon, Google, Rackspace, SalesForce sont apparus et offrent

maintenant une énorme quantité de services tels que la capacité de calcul et de
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stockage de données à la demande. Afin de soutenir de plus en plus les demandes

de services des clients, les fournisseurs de cloud ont déployé un nombre croissant de

centres de données à grande échelle. La gestion de tels centres de données impose

aux fournisseurs de cloud de résoudre un certain nombre de défis. En particulier,

les fournisseurs de cloud conçoivent et mettent en oeuvre maintenant des IaaS à

grande échelle. Comme l’infrastructure de cloud consomme beaucoup d’énergie en-

traînant des coûts opérationnels qui dépassent le coût de l’infrastructure en quelques

années, de nombreuses recherches ont été menées sur l’amélioration de l’efficacité

énergétique.

Dans le cloud computing, les techniques existantes pour les économies d’énergie

peuvent être divisées en deux catégories : (1) d’abord, Dynamic Voltage / Fréquence

Scaling (DVFS). Les économies d’énergie sont obtenues par ajustement de l’horloge

de fonctionnement pour réduire les tensions d’alimentation des circuits. Bien que

cette approche peut obtenir une réduction significative de la consommation d’énergie,

elle dépend des réglages des composants matériels pour effectuer des tâches de mise

à l’échelle; (2) Ensuite, l’autre technique visant à réduire l’énergie consommée par

un centre de données de Cloud est d’utiliser la consolidation. Il s’agit de la fusion de

plusieurs choses en une seule. Appliqué au monde de l’informatique, cela consiste

à rassembler plusieurs ressources en une seule. La virtualisation est principalement

utilisée dans les projets de consolidation de noeuds. La consolidation de noeuds vise

à minimiser le nombre de noeuds physiques nécessaires pour accueillir un groupe de

machines virtuelles (VM). Compte tenu de l’importance des économies d’énergie,

la gestion de l’efficacité énergétique des IaaS doit être conçue. Plusieurs tentatives

ont été faites au cours des dernières années pour concevoir et mettre en oeuvre des

systèmes de gestion de IaaS de cloud pour faciliter la création de IaaS de cloud

privés.

Étant donné l’augmentation du nombre de centres de données, ils sont confrontés

à des défis en termes d’évolutivité, d’autonomie et d’efficacité énergétique. Cepen-

dant, la plupart des tentatives existantes pour concevoir et mettre en oeuvre des

IaaS pour les clouds privés sont toujours basées sur des architectures centralisées,

disposant d’une autonomie, et d’une absence de mécanismes d’économie d’énergie.
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1.2 Problèmes de recherche et Objectifs

L’objectif de cette thèse est de concevoir, mettre en oeuvre et évaluer des algo-

rithmes d’ordonnancement qui tiennent compte de l’énergie dans les systèmes dis-

tribués. Pour atteindre cet objectif principal, cette thèse étudie les problèmes de

recherche suivants :

• Comment définir un algorithme d’ordonnancement. Les stratégies

d’ordonnancement de tâches ont été étudiées dans une variété de scénarios liés

à la complexité des processus d’affaires et de calcul scientifique. L’objectif de

l’ordonnancement des tâches est de répondre aux exigences de performance, et

obtenir la plus faible consommation d’énergie totale pour l’exécution de toutes

les tâches. La gestion de l’énergie dans les stratégies d’ordonnancement dans

les systèmes distribués doit prendre en compte les aspects suivants : cyclique,

la continuité, la communication, la corrélation de données, l’hétérogénéité des

noeuds et le temps. Dans le cas de l’énergie consommée dans les centres de

données, la consolidation est l’une des multiples solutions utilisées. Avec des

algorithmes d’ordonnancement distribués, il est recommandé de choisir des

techniques de coopération;

• Structure du réseau . Le type d’algorithme défini dans la section précé-

dente dépend de la façon dont est structuré le réseau: centralisé, distribué ou

hybride;

• Migration :

– Quand migrer les machines virtuelles. La consolidation dynamique des

machines virtuelles (VMs) comprend deux processus fondamentaux: (1)

la migration des machines virtuelles des noeuds surchargés pour éviter la

dégradation des performances et (2) la migration des machines virtuelles

à partir de noeuds sous-chargés pour améliorer l’utilisation des ressources

et de minimiser la consommation d’énergie. Une décision importante qui

doit être faite dans les deux cas est de déterminer quand la migration des
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machines virtuelles afin de minimiser la consommation d’énergie, tout en

respectant les contraintes de qualité de service (QoS) définis;

– Quelles VMs migrer. Une fois la décision de migrer les machines virtuelles

d’un noeud sous-chargé ou surchargé est faite, il est nécessaire de choisir

une ou plusieurs machines virtuelles à partir de l’ensemble des machines

virtuelles attribuées au noeud, qui doivent être réaffectées à d’autres

noeuds. Le problème consiste à déterminer le meilleur sous-ensemble

de machines virtuelles à migrer vers des noeuds qui ne sont pas dans

la même situation, qui fournira la reconfiguration du système le plus

bénéfique.

– Où migrer les machines virtuelles sélectionnées pour la migration. Il

s’agit de déterminer le meilleur placement des machines virtuelles sélec-

tionnées sur le noeud pour la migration vers d’autres noeuds. Il s’agit

d’un autre aspect essentiel qui affecte la qualité de la consolidation de

VM et la consommation d’énergie du système.

• Consolidation :

– Quand et où les nœuds physiques à éteindre ou allumer. Pour minimiser

la consommation d’énergie par le système et éviter les violations des ex-

igences de qualité de service, il est nécessaire de déterminer de manière

efficace, quand et quels nœuds physiques doivent être désactivés ou réac-

tivés pour gérer l’augmentation de la demande pour les ressources;

– Comment concevoir des algorithmes distribués de consolidation dynamique

de VMs. Pour fournir une évolutivité et éliminer les points de défaillance

uniques, il est nécessaire d’utiliser une approche décentralisée pour les

algorithmes de consolidation dynamique de VMs. Le problème est que

les algorithmes de gestion de ressources sont traditionnellement central-

isées. Par conséquent, une bonne approche est de proposer un système

distribué de consolidation dynamique de VMs.
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Pour faire face aux défis liés aux problèmes de recherche ci-dessus, les objectifs

suivants pour améliorer l’efficacité énergétique totale de Cloud en contrôlant de la

consommation globale d’énergie tout en respectant les contrats de niveau de service

(SLAs) des applications de Cloud, sont :

• Explorer, analyser et classer la recherche dans le domaine de l’efficacité én-

ergétique afin d’acquérir une compréhension systématique des techniques et

des approches existantes;

• Développer des algorithmes distribués, pour l’efficacité énergétique, de con-

solidation dynamique de VM pour les environnements de cloud satisfaisant

des contraintes de QoS;

• Conception et mise en oeuvre d’un simulateur de consolidation dynamique de

VM qui peut être utilisé pour évaluer les algorithmes proposés;

• Facilité de gestion des VMs : nous concevons un système qui est suffisam-

ment souple pour permettre la création et le retrait dynamiques de serveurs.

Comme les composants du système peuvent tomber en panne à tout moment,

il est souhaitable pour un système de réparer les pannes ou de réallouer les

tâches vers d’autres serveurs sans intervention humaine.

– Conservation du contexte d’exécution: Il doit être possible d’arrêter le

processus d’exécution de la VM et de le redémarrer là où il s’est arrêté.

Le temps d’exécution peut être réduite lorsque la tâche migre vers un

nœud plus puissant;

– La prévention de ralentissement : le ralentissement d’une tâche augmente

le temps d’exécution et l’énergie consommée par les hôtes et a un impact

conséquent sur les utilisateurs.

• Efficacité énergétique : l’un de nos objectifs est de proposer des algorithmes de

gestion de VMs qui sont capables de créer des moments d’inactivité de noeuds,

amenant ces derniers vers l’état d’économie d’énergie et de les réveiller une

fois nécessaire (par exemple lorsque la charge augmente).
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1.3 Méthodologie

Nous étudions différentes techniques utilisées dans le fonctionnement du Cloud et

des centres de données. Pour tester les algorithmes proposés, des simulateurs gérant

l’éfficace énergétique pour l’environnement de Cloud ont été développés. Ces simula-

teurs opèrent au niveau centralisé et décentralisé. Nous avons utilisé des techniques

comme la coopération, la collaboration et la virtualisation. Afin de satisfaire tout le

sens de la durabilité qui peut être construit sur les algorithmes d’ordonnancement

d’économes d’énergie proposés, nous analysont des solutions existantes et les com-

parons pour en choisir une que nous améliorerons. Ainsi nous montrons comment

la consolidation est capable de diminuer la consommation d’énergie par rapport à

la réduction des coûts en énergie en tenant compte des contraintes de QoS.

1.4 Organisation de la thèse

Ce résumé de thèse est organisé comme suit :

• le chapitre 2 présente un résumé des contributions . D’abord, un algorithme

d’ordonnancement nommé Anti-équilibrage de charge algorithme est présenté

. Ensuite, un algorithme decentralisé coopératif qui tient compte de l’énergie

dans le cloud utilisant l’algorithme d’anti-équlibrage de charge est présenté.

Afin d’améliorer son évolutivité , un système de consolidation VM entièrement

décentralisée basée sur un réseau P2P non de machines physiques (MP )

est proposé . Ce chapitre présente les résultats de l’algorithme centralisé de

consolidation VM et l’algorithme entièrement décentralisée de consolidation

VM . Enfin nous parlons des simulateurs.

• le chapitre 3 conclut ce manuscrit en résumant nos contributions et de présen-

ter les orientations futures de la recherche.
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Les systèmes de gestion de cloud existants sont principalement basés sur des ar-

chitectures centralisées et des mécanismes de gestion de l’énergie souffrent actuelle-

ment de plusieurs limites. Pour répondre à ces limitations, une de nos contributions

sera de concevoir, de mettre en œuvre et d’évaluer un nouveau système de gestion

de cloud. Ce système offre une solution de gestion globale de VM intégrant des

mécanismes avancés de gestion de VM tels qu’éviter des PM sous-chargées donc

la consolidation de VMs, et la gestion de l’énérgie. Nous vous proposons trois

algorithmes de gestion d’énergie dans les clouds.

Ce chapitre présente les contributions et les résultats obtenus. Il est structuré

comme suit : section 2.1 présente l’algorithme Anti-équilibrage de charge (ALBA);

section 2.2 présente l’approche centralisée; section 2.3 traite de l’approche décen-

tralisée; la section 2.4 résume les travaux sur les simulateurs; et enfin, la section 2.5

résume les résultats.
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2.1 Anti load-balancing Algorithm (ALBA).

Cette contribution est une technique d’ordonnancement d’anti-équilibrage de charge

appelée Anti load-Balancing (ALBA). Un problème souvent étudié est de savoir

comment répartir uniformément la charge de travail. Mais lorsque l’objectif est de

réduire la consommation d’énergie, ce type d’algorithmes peut conduire à avoir des

noeuds largement sous-chargés et donc de consommer inutilement de l’énergie. Ici,

nous allons étudier le problème opposé : concentrer la charge sur un nombre mini-

mum de machines. L’objectif est d’éteindre les noeuds libérés et donc de minimiser

la consommation d’énergie du système.

La technique ALBA est la base de nos deux approches centralisée et décentralisée

que nous allons présenter dans la suite de ce chapitre. Cet algorithme permet de

migrer des VMs en cours d’exécution. L’algorithme ALBA utilise principalement

deux seuils (seuil bas et seuil haut) pour la charge des noeuds. La charge d’un

noeud est comparée à ces seuils. Si elle est inférieure au seuil bas les machines

virtuelles sont migrées puis le noeud est éteint. Si la charge est supérieure au seuil

haut, une partie de cette charge est répartie sur d’autres noeuds afin de limiter le

ralentissement des VMs ou le surchauffe du noeud.

Dans cette section, nous présentons notre algorithme ALBA. Les scénarios sont

composés de quatre étapes :

• Etape 1 : déterminer quand un noeud est considéré comme étant surchargé;

ceci entrainant la migration d’un ou plusieurs machines virtuelles à partir de

ce nœud. Si la décision est d’ajouter un ou plusieurs nœuds, l’algorithme doit

déterminer la partie de la de charge qui doit être déplacée vers d’autre nœuds

ajoutés.

• Étape 2: déterminer si un noeud est sous-chargé afin de migrer toutes les

machines virtuelles à partir de ce nœud et le mettre en veille.

• Étape 3: sélection de machines virtuelles qui doivent être migrées à partir

d’un nœud surchargé.
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• Étape 4 : trouver un nouveau noeud pour les machines virtuelles sélection-

nées pour la migration.

Cet algorithme a deux avantages majeurs par rapport aux algorithmes tradition-

nelles de consolidation de VMs : (1) diviser le problème simplifie le traitement

analytique des étapes; et (2) la méthode peut être mise en œuvre de manière répar-

tie par l’exécution des procédures de détection de sous-charge et de surcharge, les

algorithmes de sélection de VMs et les algorithmes de placement de VMs.

Afin de maximiser leur retour sur investissement (ROI), les fournisseurs de Cloud

doivent appliquer des stratégies de gestion énergétique efficace des ressources, telle

que la consolidation dynamique de VMs en mettant les nœuds sous-chargés en veille.

Toutefois, cette consolidation n’est pas triviale, car il peut entraîner des violations

de SLAs négociés avec les clients.

2.2 Energy aware clouds scheduling using anti load-

balancing algorithm (EACAB).

Cette contribution présente un ordonnancement de cloud tenant compte de l’énergie,

utilisant l’algorithme Anti load-balancing (EACAB). L’algorithme EACAB est basé

sur la technique de calcul de crédit (σi,j) de chaque noeud j (dans le site i) utilisée

dans Comet [Jeon 2010].

Comet est basé sur le calcul du crédit de chaque agent mobile. Chaque agent

de Comet tente de maximiser son propre crédit en se déplaçant entre les hôtes. Un

agent ai utilise la formule suivante:

Ci = −x1wi + x2hi − x3gi

. Où wi représent la charge de calcul de l’hôte exécutant l’agent ai, hi et gi cor-

respondent à la charge de communication à l’intérieur et à l’extérieur de l’agent

ai, et où X1, X2 et x3 sont des coefficients de type réel, positifs qui constituent

la dépendance attribué à chaque agent à sa création servant d’estimer son affinité

par rapport à leur hôte. Ainsi un agent se déplace vers un nouvel hôte si la charge
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attribuée par l’hôte actuel est inférieure est à celle sollicitée, ou si sa communication

externe est réduite ou si la communication interne augmente.

De la même manière, l’algorithme EACAB proposé fonctionne en associant

une valeur de crédit à chaque noeud. Le crédit d’un noeud dépend du noeud,

sa charge de travail actuelle, ses communications et l’historique de l’exécution des

VMs. Quand un noeud est sous-chargé (charge < gamma), toutes ses VMs sont

migrent vers un noeud relativement plus chargé. La formule est alors :

σi,j = ci,j − ri,jsi,j + ε− γ

Où ci,j est la charge actuelle du noeud j dans le site i, ri,j est sa charge de calcul

demandé, si,j est la satisfaction des VMs, et γ et ε sont respectivement le seuil de

sous-charge et de surcharge.

Chaque noeud dispose de son propre crédit. Plus le crédit d’un noeud est élevé,

plus ses ses VMs ont la chance d’y rester. Le crédit d’un noeud augmente si :

• Sa charge de travail ou le nombre de VMs dans le noeud augmente;

• ses communications entre ses VMs et d’autres noeuds augmente;

• sa charge augmente, tout en restant entre le seuil de sous-charge γ et le seuil

de surcharge ε.

Au contraire, le crédit d’un noeud diminue dans les cas suivants:

• Sa charge de travail ou le nombre de VMs diminue;

• le noeud a juste envoyé ou reçu un message de l’ordonnanceur qui indique que

le noeud va probablement devenir vide dans un temps court.

Le crédit d’un noeud sera utilisé dans la politique de sélection: le noeud qui a le

crédit le plus faible est sélectionné pour la migration des VMs. La politique de

localisation identifie le noeud distant qui a le plus grand crédit et qui est en mesure

de recevoir les VMs sélectionnées par la politique de sélection sans être trop chargé.
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L’algorithme est présenté au chapitre 3 de la partie 1. Les économies d’énergie

sont atteintes par la consolidation continue de machines virtuelles en fonction de

l’utilisation actuelle des noeuds.

2.3 Cooperative scheduling Anti load-balancing Algo-

rithm for cloud (CSAAC).

L’ordonnancement dynamique d’un grand nombre de machines virtuelles dans le

cadre des infrastructures largement distribuées est soumis à d’importants problèmes

d’évolutivité, de réactivité, et de tolérance aux pannes dans une stratégie de contrôle

centralisé.

Dans cette section, nous étudions si une approche décentralisée peut aider à ré-

soudre les problèmes notés dans les sytèmes centralisés. La principale contribution

de cette section est l’introduction d’une approche distribuée qui permet d’optimiser

des performances et de réaliser des gains d’énergie sur le cloud global. Dans cet

approche d’ordonnancement dynamique décentralisée nous avons proposé un algo-

rithme intitulée Cooperative scheduling Anti load-balancing Algorithm for cloud

(CSAAC). Il est composée d’une phase de migration, d’une phase de soumission de

VMs et d’une phase d’ordonnancement dynamique.

La phase de soumission constitue la première phase de l’algorithme. Chaque fois

qu’un noeud j reçoit une VMi,j,k soumise par un utilisateur local, celui-ci (noeud

j) se comporte comme noeud demandeur Hreq
i,j et génère un message de demande

d’exécution M req
i,j,k. Ce message contient les informations sur les caractéristiques

de la VM VMi,j,k, notamment le temps d’exécution estimé Di,j,k et le nombre de

processeur (PE) demandé VMpe
i,j,k. Le message de requête est reproduit et diffusé.

Tous les noeuds recevant le message M req
i,j,k, y compris la noeud demandeur j, sont

considérés comme des noeuds répondeurs. Chaque noeud répondeur Hresp
i′,j′ doit en-

voyer un message d’acceptationMack
i′,j′,k indiquant que le noeud j′ est capable et prêt

à exécuter la VM reçu VMi,j,k. Chaque candidat , considéré comme noeud répon-

deur, en fontion de son statut et de ses ressources, calcule un temps d’éxécution

estimée de la VM et surtout l’énergie consommée nécessaire. Ces informations sont
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envoyées au au noeud demandeur sous forme de message d’acceptation Mack
i′,j′,k. Le

noeud demandeur recueille tous les messages reçu Mack
i′,j′,k, et génère un message

Mass
i′,j′,k et l’envoyer au noeud sélectionné Hass

i′,j′ (noeud attribué).

La phase d’ordonnancement dynamique permet par exemple de prendre une

décision de redistribution pour une machine virtuelle qui se trouve dans une liste

longue et donc ne peut pas être exécutée immédiatement par le noeud. Périodique-

ment la phase de migration est exécutée pour résoudre les problèmes de surcharge

et de sous charge des noeuds.

La motivation principale de cet approche est de permettre l’ordonnancement ef-

ficient qui minimise la consommation d’énergie dans le cloud global. Contrairement

aux solutions d’ordonnancement classique dans les cloud, cet algorithme est conçu

pour offrir l’ordonnancement d’événements pertinents, tels que la soumission de

VM . De plus, l’algorithme permet le rééchelonnement dynamique afin de s’adapter

aux caractéristiques des centres de données de cloud telles que l’instantanéité et de

la volatilité. L’algorithme, composé de trois phases, utilise également la consolida-

tion afin de réduire l’énergie consommée.

2.4 Simulateurs.

Pour évaluer des algorithmes d’ordonnancement dans un environnement de cloud

computing mais surtout la consommation d’énergie des infrastructures de cloud

nous avons besoin d’un simulateur qui a les fonctionnalités suivantes : (1) prendre

en compte l’énergie consommée par le système et le temps d’exécution des tâches;

(2) utilisation des techniques de virtualisation, de migration et surtout la possibilité

d’éteindre ou d’allumer des nœuds physiques; (3) paramétrage facile pour simuler

de nouveaux algorithmes et (4) simuler des algorithmes décentralisés dynamiques

et coopératifs dans un environnement de cloud.

Ainsi nous avons développé un simulateur Enersim 1 qui étend ALEA et CloudSim.

CloudSim gère des machines virtuelles et étend GridSim. Les principales limites de

CloudSim sont le manque de coopération entre les entités et les nœuds qui ne

tiennent pas compte de l’énergie. La plupart de ces fonctions sont directement util-
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isées dans Enersim 1. C’est un outil utilisé pour simuler l’algorithme proposé dans

l’approche centralisée, EACAB. EnerSim 1 améliore de manière significative Alea

et CloudSim et prend en compte la consommation d’énergie des infrastructures de

cloud.

Ainsi un nouveau type de ressource nommée Enerhost a été ajouté. La classe

Enerhost.java contient des nouvelles méthodes qui calculent de façon approximative

l’énergie consommée par les ressources. Nous avons défini pour chaque nœud j d’un

site i deux caractéristiques : la puissance minimum (pmin
i,j ) et la puissance maximale

(pmax
i,j ).

De même, une nouvelle classe abstraite appelée ReplayPolicy hérité des classes

DatacenterBroker de Alea et AllocPolicy de CloudSim est également ajoutée. Cette

classe permet de sélectionner au hasard un ensemble de nœuds avec une configura-

tion donnée, et d’y exécuter des machines virtuelles. Les machines virtuelles sont

introduites afin de simuler des environnements de cloud. Nous avons ajouté des

paramètres pmin
i,j et pmax

i,j sur les machines virtuelles. La classe VM dans EnerSim 1

prend en compte l’énergie.

D’autre classes telles que EnerJob, Migration et OverReservation ont été ajoutées.

Enersim 1 permet également aux utilisateurs d’exporter les résultats sous le format

cvs ou xls et facilite ainsi la génération de graphiques. Enersim 1 a une interface

graphique complète qui peut être utilisé pour configurer la simulation. Une limite

de Enersim est qu’il ne peut que simuler des algorithmes centralisés.

Ensuite, EnerSim 1 a été étendue avec la possibilité de simuler des algorithmes

décentralisés et surtout dans le cas des ordonnancements coopératifs. Le simulateur

Enersim 2 étend MagateSim et Enersim 1. Le simulateur MagateSim dont apporte

les propriétés décentralisées et coopératives. MaGateSim étendu avec l’ajout de

propriétés qui lui permettent de tenir compte de l’énergie et de la migration. Ener-

Sim 2 étend MaGateSim en lui permettant de gérer des VM mais surtout l’énergie

consommer par les ressources. Nous avons ajouté l’interface IJob qui est implé-

mente la classe de MagateSim Job. Ainsi, nous créons la classe EnerJobII de qui

héritent de la classe de EnerJob de Enersim 1 et implémente l’interface IJob. La

nouvelle classe simResourceInfo donne des informations sur les ressources. La classe
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AdvancedPolicy étend la classe AllocPolicy de Enersim 1.

2.5 Résultats.

Nous avons évalué EACAB et CSAAC qui sont des systèmes de gestion d’énergie

efficace pour les IaaS de cloud dans les centres de données virtualisés à grande

échelle .

La simulation a été réalisée dans un environnement de 100 clusters contenant 100

nœuds chacun. 1000 tâches sont générées aléatoirement avec une durée d’exécution

entre 10 et 40 ans. Nous supposons qu’un nœuds j dans le site i a deux états

: Allumé et éteint. Lorsqu’un nœud est allumé, sa consommation d’énergie est

fonction de la charge et est entre Pmin
i,j et Pmax

i,j . Les expériences ont montré que

l’algorithme produit un gain d’énergie qui peut atteindre 50% par rapport à un

algorithme standard First Fit (FF) [Borgetto 2012]. Une observation est que cet

algorithme est capable de réduire la consommation d’énergie de 15% à 35% lorsque le

nombre de tâches augmente 350-1000. EACAB vérifier régulièrement l’existence de

nœuds surchargés ou sous-chargés pour migre leurs machines virtuelles afin d’éviter

le ralentissement de certains. FF ne vérifie pas la surcharge des nœuds. Quand le

nombre de tâches augmente le nombre de noeuds allumés augmente également, ce

qui conduit à une consommation d’énergie plus élevée. Cela est particulièrement

vrai s’il n’y a pas de migration après le placement initial des tâches. Le gain

d’énergie de notre algorithme augmente avec le nombre de tâches car la migration

est activée. Le nombre de migrations est faible dans les deux EACAB et FF au début

de l’expérience. Les bons résultats de EACAB viennent du fait de l’augmentation

des possibilités pour faire migrer des tâches quand le nombre de tâches augmente.

Il répartit mieux les tâches sur les nœuds, et réduit le nombre de nœuds allumé.

Avec le seuil de sous charge définit, il est possible de réduire encore le nombre de

noeuds sous tension, mais ceci peut entrainer la surcharge de noeuds restants. Ces

nœuds seraient devenus des points chauffages et auraient un impact négatif sur

le refroidissement. C’est pourquoi nous avons défini un autre seuil de surcharge.

Dans l’ensemble, l’EACAB peut allouer efficacement les VMs avec un gain d’énergie
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importante.

Le CSAAC a été largement évalué en utilisant des tâches de Grid’5000 et a mon-

tré son évolutivité et son efficacité énergétique. En particulier, nos résultats expéri-

mentaux ont montré que : (1) le CSAAC est capable d’obtenir un placement des

tâches à faible consommation d’énergie en un temps optimimum; (2) la performance

des applications n’est pas affectée en effectuant des migrations avec l’utilisation de

seuils de sous-charge ou de surcharge; (3) le système s’adapte parfaitement avec un

nombre croissant de ressources le rendant ainsi apte à gérer à grande échelle des

centres de données virtualisés ; (4) La technique d’anti-équilibrage de charge utilisé

par les deux approches permet de réaliser des économies d’énergie substantielles;

(5) quand le nombre de tâches > 300, le CSAAC est capable de réduire la con-

sommation d’énergie moyenne d’environ 10 à 80% . (5) le temps d’exécution des

travaux est également réduite de 5 à 25% lorsque le nombre de tâches > 300 , par

rapport à l’algorithme CASA

Enfin, nous avons comparé les deux algorithmes et pouvons obtenir la conclusion

évidente que EACAB et CSAAC peuvent réduire l’énergie consommée des centres

de données.
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Cette thèse examine l’ordonnancement de tâches dans le cloud en développant

des approches de solution au problème de consommation d’énergie dans le cloud.

Notre objectif est de concevoir l’ordonnancement dans le cloud en tenant compte

de l’énergie utilisant l’algorithme anti équilibrage de charge capable de coordonner

les comportements de l’ordonnancement des entités indépendantes dans le cloud.

La solution développée vise principalement à réduire l’énergie consommée. Elle est

basée sur l’ordonnancement centralisée et décentralisée qui est adéquate pour le

cloud.

Cette thèse essaie d’améliorer la compréhension de la modélisation du prob-

lème d’ordonnancement dans l’environnement Cloud pour réduire la consommation

d’énergie. Une orientation était d’étudier les modèles pour y inclure l’allocation des

ressources en tenant compte de l’énergie. Il y a une demande croissante de la puis-

sance de calcul de l’industrie et des universitaires, qui a conduit à la consommation

de puissance extrême. Nombres d’initiatives ont été prises dans le développement

de matériel éconergétique. La consommation globale d’énergie cependant, continue

de croître en raison des exigences écrasantes pour les ressources informatiques et les

centres de données. L’utilisation de la consommation de la puissance d’une manière

inefficace finira par conduire à des problèmes critiques tels que l’insuffisance ou le

dysfonctionnement du système de refroidissement. La forte consommation d’énergie

conduit à générer une quantité substantielle de dioxyde de carbone. L’architecture
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proposée dans cette thèse considère la décision d’ordonnancement basée sur l’utilisation

des ressources et de l’énergie consommée. Nous avons étendu le modèle d’ordonnancement

pour l’allocation des ressources en tenant compte à la fois de la consolidation (pour

éteindre noeuds) et des propriétés des tâches en vue de réduire la consommation

totale d’énergie. Dans le chapitre 3 de la partie 1, les algorithmes de consolidation

dynamique de VM ont été analysés. Le chapitre a conclu par une discussion sur les

avantages potentiels d’algorithmes d’ordonnancement décentralisées. Cette thèse a

proposé et étudié une série de nouvelles techniques pour la gestion distribuée de la

consolidation dynamique de VM dans les IaaS de cloud sous contraintes de QoS.

L’approche proposée améliore l’utilisation des ressources des centres de données et

réduit la consommation d’énergie, tout en satisfaisant les exigences de qualité de

service définis.

Ce chapitre récapitule les contributions principales de ce travail et présente des

orientations futures de recherche.

3.1 Résumé contributions

Le Cloud est devenu un autre mot à la mode après le Web 2.0. Cependant, il y

a des dizaines de définitions différentes pour le Cloud Computing et il semble y

avoir aucun consensus sur ce qu’est un cloud. D’autre part, le Cloud n’est pas un

concept entièrement nouveau; il dispose d’une connexion complexe au paradigme

grille de calcul relativement nouveau, et d’autres technologies pertinentes, telles

que l’informatique utilitaire, les clusters, et les systèmes distribués en général. Le

Cloud a récemment émergé comme un nouveau paradigme informatique qui permet

aux clients de louer des services basés sur le modèle “pay-as-you-go”. Les clients

sont facturés pour seulement ce qu’ils utilisent. Pour supporter les demandes de

services croissant des clients, les fournisseurs de cloud construisent actuellement un

nombre croissant de centres de données à grande échelle. La gestion de tels centres

de données est une tâche stimulante. Elle implique la conception de nouvelles

bases de gestion du cloud et des algorithmes qui peuvent baisser la consommation

d’énergie de centre de données pendant les périodes de basse utilisation de ressource.
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Cette thèse nous a permis de concevoir, mettre en oeuvre et évaluer un système de

placement des tâches à haut rendement énergétique pour les cloud.

• Algorithme "Anti load-Balacing" . Dans cette thèse, nous avons analysé

et développé un modèle d’ordonnancement qui est l’inverse de l’équilibrage de

charge. Avec cet algorithme les VMs sont concentrées dans un minimum de

noeuds. Cette concentration de la charge ou l’anti-équilibrage de charge per-

met d’économiser de l’énergie consommée par les nœuds, mais peut dégrader

les performances des nœuds et potentiellement augmenter leur la consomma-

tion d’énergie.

• Algorithm d’ordonnancement "Anti load-Balacing" dans le Cloud

tenant compte de l’énergie. Un algorithme centralisée de consolidation

dynamique de VM a été proposé et permetd’obtenir un gain d’énergie signi-

ficative. L’algorithme est basé sur un modèle de crédit défini dans Comet.

Nous pouvons affirmer que les économies d’énergie sont atteintes par la con-

solidation continue de machines virtuelles en fonction de l’utilisation actuelle

des ressources.

• Algorithm cooperatif d’ordonnancement "Anti load-Balacing" dans

le Cloud tenant compte de l’énergie. Une consolidation dynamique dis-

tribuée de VMs consistant à diviser le problème en 4 sous-problèmes: (1) la

détection de sous charge de noeud; (2)détection de surcharge de noeud; (3)

la sélection VM, et (4) placement VM. Les gestionnaires locaux éliminent

le point de défaillance unique et rendent le système totalement distribué et

décentralisé. Comparé avec d’autres travaux de recherche, notre algorithme

permet de réaliser des économies d’énergie tout en menant à bien l’exécution

des tâches.

Nous avons distribué cet algorithme, de sorte que chaque cluster puisse échanger

des tâches, en fonction de leurs charges respectives. Nous avons présenté et

évalué cette approche décentralisée pour le cloud. Il prend en compte l’énergie

et fournit une amélioration de l’efficacité énergétique par rapport aux algo-

rithmes de déséquilibrage de charge classiques. Notre principal problème était
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d’optimiser la consommation d’énergie suivant des contraintes de performance

des VMs. La consommation d’énergie est à prendre au sens large en essayant

d’éviter des points chauds pour réduire l’impact sur le refroidissement. Dans

l’ensemble, l’approche proposée permet de placer efficacement les VMs avec

un gain d’énergie importante.

Ainsi, nous avons évalué CSAAC en utilisant la simulation. Les résultats de

la simulation ont montré que notre algorithme est capable d’effectuer des or-

donnancements à faible consommation d’énergie en utilisant moins de temps.

En particulier, nous avons montré que dans le cas où le nombre de tâche

est supérieur à 300, notre algorithme est capable de réduire la consomma-

tion d’énergie moyenne d’environ 10% à 80%. Dans le même temps, le temps

d’exécution des tâches est également réduit de 5% à 25% lorsque le nombre

de tâches est supérieur à 300.

Les conclusions tirées de ces résultats indiquent que les approches proposées

d’ordonnancement nécessitent plus de travail, mais sont par ailleurs promet-

teuses en ce qui concerne l’efficacité énergétique.

• Nous avons développé pour l’approche centralisée un simulateur EnerSim

1 cité ci-dessus. EnerSim 1 étend ALEA et CloudSim. Afin de simuler

l’ordonnancement coopérative, nous avons étendu MaGateSim et EnerSim

1 par l’ajout de propriétés permettent de tenir compte de l’énergie et de la

migration.

En outre, nous avons effectué des expériences consistant à comparer l’approche

centralisée et la consolidation VM dynamique distribué. Des expériences

menées sur une topologie de Grid5000 ont montré que la consolidation dy-

namique VM est capable de réduire la consommation d’énergie par les nœuds

de calcul jusqu’à 30%.
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3.2 Perspectives

Comme nous venons de le voir dans la section 3.1 , les résultats obtenus nous ont

donné une motivation suffisante pour envisager la suite en tant que futurs sujets de

recherche à étudier dans le prolongement de cette thèse.

Nous prévoyons d’étendre l’hétérogénéité de notre modèle de performance à

d’autres parties de l’IaaS de cloud. Nous tenons à soutenir pleinement l’hétérogénéité

des machines virtuelles, les machines physiques (PMs) et les tâches des utilisateurs,

plus précisément, les machines virtuelles sont variée en termes de mémoire, disque,

et de CPU; les PMs peuvent différer en terme de capacité de calcul, de réseau,

de mémoire, de disque, Graphics Processing Unit (GPU) et d’hyperviseur (VMM);

les tâches d’un utilisateur peuvent demander plusieurs ressources différentes pour

différentes quantités de temps.

Malgré d’importantes contributions permettant d’augmenter l’efficacité énergé-

tique, il y a un certain nombre de défis en matière de recherche ouverts qui doivent

être abordés afin de faire progresser le domaine.

• Topologies de réseaux de VM

Dans les centres de données virtualisés les VMs communiquent souvent en-

tre elles, créant des topologies de réseaux virtuels. Toutefois, en raison des

migrations de machines virtuelles ou l’allocation non optimale, les machines

virtuelles communiquant peuvent se retrouver hébergés sur des nœuds physiques

logiquement éloignés conduisant à des transferts de données coûteuses entre

eux. Si les machines virtuelles communiquant sont allouées à des machines

dans différents racks ou boîtiers, la communication réseau peut impliquer des

commutateurs qui consomment des quantités importantes d’énergie. Pour

éliminer ce transfert de données supplémentaires et de réduire la consomma-

tion d’énergie, il est nécessaire d’observer la communication entre les machines

virtuelles et placer les machines virtuelles qui communiquent sur les mêmes

nœuds ou nœuds étroitement situés. En particulier, pour fournir des réalloca-

tions efficaces, il est nécessaire de développer des modèles de consommation

d’énergie des périphériques réseau et estimer le coût de transfert de données
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en fonction du volume de trafic. En outre, les migrations de VM consom-

ment de l’énergie supplémentaire et ont un impact négatif sur la performance.

L’algorithme de placement dde VMs doit veiller à ce que le coût de la migra-

tion ne dépasse pas les bénéfices.

• Seuil dynamique

Les valeurs fixes du seuil d’utilisation ne sont pas adaptées pour un envi-

ronnement avec des charges de travail dynamiques et imprévisibles, dont les

différents types d’applications peuvent partager un nœud physique. Le sys-

tème devrait être capable d’ajuster automatiquement son comportement en

fonction des modèles de charge de travail exposés par les applications. Il sera

interéssant de présenter un algorithme pour l’auto-ajustement du seuil.

• SLAs dynamiques et hétérogènes

Les centres de données de cloud doivent fournir des garanties de qualité de ser-

vice strictes, qui sont documentés sous la forme de SLA. L’approvisionnement

des ressources au sein d’un centre de données influe directement si les SLA sont

remplies. Les clients ont des exigences très différentes, qui peuvent également

varier dans le temps. Par exemple, une organisation qui utilise les services

de Cloud peut exiger des garanties plus strictes de temps de réponse dans

la journée que dans la nuit. Pour résoudre le problème, il est nécessaire de

développer des algorithmes qui exploitent la variation du temps de SLA de

l’utilisateur afin de minimiser le nombre de serveurs physiques requises.

Actuellement, pour simplifier la gestion, les ressources des centres de données

de cloud sont attribués aux clients en fonction uniquement des SLAs de ce

client, quels que soient les SLAs d’autres utilisateurs. Les différences intrin-

sèques entre les différents SLA peuvent faire de grandes différences dans le

nombre de ressources affectées à chaque utilisateur. Il est important de con-

cevoir et analyser des algorithmes qui font usage de cette hétérogénéité. En

outre, pour répondre aux besoins des centres de données de cloud à grande

échelle, il est nécessaire de concevoir une solution évolutive pour gérer des

milliers d’utilisateurs.



3.2. Perspectives 165

• Consolidation dynamique de VM tenant compte de la température

Une partie importante de l’énergie électrique consommée par les ressources

informatiques est transformée en chaleur. Une température élevée conduit à

un certain nombre de problèmes, tels que la fiabilité du système et réduit la

disponibilité, ainsi que la diminution de la durée de vie du matériel. Afin de

garder les composants du système au sein de leur température de fonction-

nement et éviter les pannes et les accidents, la chaleur émise doit être dis-

sipée. Le problème de refroidissement devient extrêmement important pour

les serveurs qui emballent des ressources informatiques à haute densité et com-

pliquent la dissipation de chaleur. Par conséquent, en plus des améliorations

de matériel, il est indispensable de traiter le problème de l’optimisation du re-

froidissement le fonctionnement du système. Une des façons de minimiser les

coûts d’exploitation du refroidissement est de surveiller en permanence l’état

thermique de nœuds physiques et de réaffecter les machines virtuelles d’un

noeud quand il devient surchauffé. Dans ce cas, le système de refroidissement

du noeud déchargé peut être ralenti permettant la dissipation de la chaleur

naturelle. En outre, il y a eu des travaux de recherche sur la modélisation de

la topologie thermique d’un centre de données qui peuvent conduire au place-

ment de la charge de travail plus efficace [Johnson 2009]. Par conséquent, il

est nécessaire de savoir comment et quand réaffecter les machines virtuelles

afin de minimiser la puissance absorbée par le système de refroidissement, tout

en préservant la température en toute sécurité des ressources et en minimisant

les frais de la migration et de la dégradation de la performance.





Appendix A

Annex

Figure A.1: Submission phase : Task distribution process



168 Appendix A. Annex

Figure A.2: Dynamic scheduling phase : Task distribution process
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