3 research outputs found

    Time Properties Dedicated Transformation from UML-MARTE Activity to Time Petri Net

    Get PDF
    Critical Real-Time Embedded Systems (RTES) have strong requirement regarding system's reliability. UML and its pro- file MARTE are standardized modeling language that are getting widely accepted by industrial designers to cope with the development of complex RTES. Relying on Model-Driven Engineering (MDE), critical time properties' verification in UML-MARTE model at early phases of the system lifecycle becomes possible. However, many challenges still exist. A key challenge is to eliminate the gap between UML semi- formal semantics and fully formal executable semantics us- ing model transformation. The model transformation must ensure on the one hand the consistency between high-level user dedicated models and lower-level verification dedicated ones, and on the other hand that the subsequent verification is not too expensive and can be applied to real size industrial models. This paper presents an approach to translate UML- MARTE Activity Diagrams to Time Petri Net (TPN) with the aim of verifying efficiently time properties. This work is under the framework of the UML-MARTE Model Checker which is dedicated to verifying time properties (synchroniza- tion, schedulability, boundedness, WCET, etc.) in RTES. This contribution focuses on how to define the TPN formal semantics to avoid the core problem of state space explosion in model checking. The proposed method is validated using a representative case study. Experimental results are given that demonstrate the method's performance
    corecore