1,964 research outputs found

    Terrestrial applications: An intelligent Earth-sensing information system

    Get PDF
    For Abstract see A82-2214

    Compendium of Applications Technology Satellite user experiments

    Get PDF
    The achievements of the user experiments performed with ATS satellites from 1967 to 1973 are summarized. Included are fixed and mobile point to point communications experiments involving voice, teletype and facsimile transmissions. Particular emphasis is given to the Alaska and Hawaii satellite communications experiments. The use of the ATS satellites for ranging and position fixing of ships and aircraft is also covered. The structure and operating characteristics of the various ATS satellite are briefly described

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Summary of the Active Microwave Workshop, chapter 1

    Get PDF
    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications

    ์„ผํ‹ฐ๋ฏธํ„ฐ ๊ธ‰ ๊ด‘์—ญ ๋ณด๊ฐ•ํ•ญ๋ฒ• ์‹œ์Šคํ…œ์˜ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ๊ธฐ์ฐฝ๋ˆ.Recently, the demand for high-precision navigation systems for centimeter-level service has been growing rapidly for various Global Navigation Satellite System (GNSS) applications. The network Real-Time Kinematic (RTK) is one of the candidate solution to provide high-accuracy position to user in real-time. However, the network RTK requires a lot of reference stations for nationwide service. Furthermore, it requires high-speed data-link for broadcasting their scalar-type corrections. This dissertation proposed a new concept of satellite augmentation system called Compact Wide-Area RTK, which provides centimeter-level positioning service on national or continental scales to overcoming the limitation of the legacy network RTK methods. Using the wide-area network of multiple reference stations whose distance is 200~1,000 km, the proposed system generates three types of carrier-phase-based corrections: satellite orbit corrections, satellite code/phase clock (CPC) corrections, tropospheric corrections. Through the strategy of separating the scalar-type corrections of network RTK into vector forms of each error component, it is enable to expand network RTK coverage to continental scale using a similar number of reference stations as legacy meter-level Satellite-Based Augmentation System (SBAS). Furthermore, it is possible to broadcast their corrections over a wide-area using geosynchronous (GEO) satellite with extremely low-speed datalink of 250 bps likewise of legacy SBAS. To sum up, the proposed system can improve position accuracy by centimeter-level while maintaining the hardware infrastructure of the meter-level legacy SBAS. This study mainly discussed on the overall system architecture and core algorithms for generating satellite CPC corrections and tropospheric corrections. This study proposed a new Three-Carrier Ambiguity Resolution (TCAR) algorithm using ionosphere-free combinations to correctly solve the integer ambiguity in wide-area without any ionospheric corrections. The satellite CPC corrections are calculated based on multiple stations for superior and robust performance under communication delay and outage. The proposed algorithm dramatically reduced the latency compensation errors and message amounts with compare to conventional RTK protocols. The tropospheric corrections of the compact wide-area RTK system are computed using GPS-estimated precise tropospheric delay and weather data based model together. The proposed algorithm adopts spherical harmonics function to significantly reduce the message amounts and required number of GPS reference stations than the network RTK and Precise Point Positioning-RTK (PPP-RTK), while accurately modeling the spatial characteristic of tropospheric delay with weather data together. In order to evaluate the user domain performance of the compact wide-area RTK system, this study conducted the feasibility test on mid-west and south USA using actual GPS measurements. As a result, the 95% horizontal position error is about 1.9 cm and the 95% vertical position error is 7.0 cm after the integer ambiguity is correctly fixed using GPS-only signals. The user ambiguity resolution takes about 2 minutes, and success-fix rate is about 100 % when stable tropospheric condition. In conclusion, the compact wide-area RTK system can provide centimeter-level positioning service to wide-area coverage with extremely low-speed data link via GEO satellite. We hope that this new system will consider as candidate solution for nationwide centimeter-level service such as satellite augmentation system of the Korea Positioning System (KPS).์ตœ๊ทผ ์ž์œจ์ฃผํ–‰์ž๋™์ฐจ, ๋ฌด์ธ ๋“œ๋ก  ๋ฐฐ์†ก, ์ถฉ๋Œ ํšŒํ”ผ, ๋ฌด์ธํŠธ๋ž™ํ„ฐ๋ฅผ ์ด์šฉํ•œ ์Šค๋งˆํŠธ ๋ฌด์ธ ๊ฒฝ์ž‘ ๋“ฑ ์œ„์„ฑํ•ญ๋ฒ•์‹œ์Šคํ…œ(GNSS, Global Navigation Satellite System)์„ ์‚ฌ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์‘์šฉ๋ถ„์•ผ์—์„œ ์ˆ˜ cm ์ˆ˜์ค€์˜ ์ •๋ฐ€ ์œ„์น˜ ์ •๋ณด์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” 1 m ๊ธ‰์˜ ์ •ํ™•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ ๋†’์€ ์œ„์น˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ๊ธฐ์กด์˜ ์ •์ง€๊ถค๋„์œ„์„ฑ ๊ธฐ๋ฐ˜ ๊ด‘์—ญ ๋ณด๊ฐ•ํ•ญ๋ฒ• ์‹œ์Šคํ…œ(SBAS, Satellite-Based Augmentation System)์˜ ๊ธฐ์ค€๊ตญ ์ธํ”„๋ผ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ์ˆ˜ cm ์ˆ˜์ค€์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ดˆ์ •๋ฐ€ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์‹ค์‹œ๊ฐ„ ์ •๋ฐ€ ์ธก์œ„(RTK, Real-Time Kinematic)๋Š” ๋ฐ˜์†กํŒŒ ์œ„์ƒ ์ธก์ •์น˜์— ํฌํ•จ๋œ ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•˜์—ฌ ์ˆ˜ cm ์ˆ˜์ค€์˜ ์ •๋ฐ€ ํ•ญ๋ฒ• ์„œ๋น„์Šค๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์•ฝ 50~70 km ๊ฐ„๊ฒฉ์œผ๋กœ ๋ถ„ํฌ๋œ ๋‹ค์ˆ˜์˜ ๊ธฐ์ค€๊ตญ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜๋Š” Network RTK ๊ธฐ๋ฒ•์€ ๋™์  ์‚ฌ์šฉ์ž์˜ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ์œ„์น˜ ๊ฒฐ์ •์ด ๊ฐ€๋Šฅํ•œ ์ธํ”„๋ผ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์Šค์นผ๋ผ ํ˜•ํƒœ๋กœ ๊ตฌ์„ฑ๋œ Network RTK ๋ณด์ •์ •๋ณด๋Š” ๊ฐ ๊ธฐ์ค€๊ตญ ๋ณ„๋กœ ๊ด€์ธก๋œ ์œ„์„ฑ ์ˆ˜์— ๋”ฐ๋ผ ์ƒ์„ฑ์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณด์ • ๋ฐ์ดํ„ฐ ๋Ÿ‰์ด ์ƒ๋‹นํžˆ ๋ฐฉ๋Œ€ํ•˜๋‹ค. ๋ฉ”์‹œ์ง€ ์ „์†ก์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ๋Ÿ‰์ด ๋งŽ์„์ˆ˜๋ก ๊ณ ์†์˜ ํ†ต์‹  ํ™˜๊ฒฝ์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ๋ฉ”์‹œ์ง€ ์‹œ๊ฐ„ ์ง€์—ฐ์ด๋‚˜ ํ†ต์‹  ๋‹จ์ ˆ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์Šค์นผ๋ผ ํ˜•ํƒœ์˜ ๋ณด์ •์ •๋ณด๋Š” ์‚ฌ์šฉ์ž์™€ ๊ธฐ์ค€๊ตญ ๊ฐ„์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฉ€์–ด์งˆ์ˆ˜๋ก ๋ณด์ • ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋ฐœ์ƒํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€๋ฅ™ ํ˜น์€ ๋‚˜๋ผ ๊ทœ๋ชจ์˜ ๊ด‘์—ญ์—์„œ ์„œ๋น„์Šคํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ˆ˜์‹ญ~์ˆ˜๋ฐฑ ๊ฐœ ์ด์ƒ์˜ ๊ธฐ์ค€๊ตญ ์ธํ”„๋ผ ๊ตฌ์ถ•์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, SBAS๊ฐ€ ํ•œ๋ฐ˜๋„ ์ง€์—ญ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•ด 5~7๊ฐœ์˜ ๊ธฐ์ค€๊ตญ์ด ํ•„์š”ํ•œ ๋ฐ˜๋ฉด Network RTK๋Š” 90~100๊ฐœ์˜ ๊ธฐ์ค€๊ตญ์ด ํ•„์š”ํ•˜๋‹ค. ์ฆ‰ Network RTK๋Š” ์‹œ์Šคํ…œ ๊ตฌ์ถ• ๋ฐ ์œ ์ง€ ๋น„์šฉ์ด SBAS ๋Œ€๋น„ ์•ฝ 15๋ฐฐ ์ •๋„ ๋งŽ์ด ๋“ค๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด Network RTK์˜ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๋Œ€๋ฅ™ ๊ธ‰ ๊ด‘๋ฒ”์œ„ํ•œ ์˜์—ญ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ cm๊ธ‰ ์ดˆ์ •๋ฐ€ ์œ„์น˜๊ฒฐ์ • ์„œ๋น„์Šค ์ œ๊ณต์ด ๊ฐ€๋Šฅํ•œ Compact Wide-Area RTK ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ๊ด‘์—ญ๋ณด๊ฐ•ํ•ญ๋ฒ•์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. Compact Wide-Area RTK๋Š” ์•ฝ 200~1,000 km ๊ฐ„๊ฒฉ์œผ๋กœ ๋„“๊ฒŒ ๋ถ„ํฌ๋œ ๊ธฐ์ค€๊ตญ ๋„คํŠธ์›Œํฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ •๋ฐ€ํ•œ ์œ„์„ฑ ๊ถค๋„ ๋ณด์ •์ •๋ณด, ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด, ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ๊ธฐ์กด ์Šค์นผ๋ผ ํ˜•ํƒœ์˜ Network RTK ๋ณด์ •์ •๋ณด ๋Œ€์‹  ์˜ค์ฐจ ์š”์†Œ ๋ณ„ ๋ฒกํ„ฐ ํ˜•ํƒœ์˜ ์ •๋ฐ€ ๋ณด์ •์ •๋ณด๋ฅผ ์ƒ์„ฑํ•จ์œผ๋กœ์จ ๋ฐ์ดํ„ฐ ๋Ÿ‰์„ ํš๊ธฐ์ ์œผ๋กœ ์ ˆ๊ฐํ•˜๊ณ  ์„œ๋น„์Šค ์˜์—ญ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ์ข…์ ์œผ๋กœ SBAS์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ 250 bps์˜ ์ €์† ํ†ต์‹  ๋งํฌ๋ฅผ ๊ฐ€์ง„ ์ •์ง€๊ถค๋„์œ„์„ฑ์„ ํ†ตํ•ด ๊ด‘์—ญ์œผ๋กœ ๋ณด์ •์ •๋ณด ๋ฐฉ์†ก์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 3๊ฐ€์ง€ ๋ณด์ •์ •๋ณด ์ค‘ ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด์™€ ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์„ ์œ„ํ•œ ํ•ต์‹ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ์ค‘์ ์ ์œผ๋กœ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜์˜ ์ •๋ฐ€ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์„ ์œ„ํ•ด์„œ๋Š” ๋จผ์ € ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‚ผ์ค‘ ์ฃผํŒŒ์ˆ˜ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ์ธก์ •์น˜์˜ ๋ฌด-์ „๋ฆฌ์ธต ์กฐํ•ฉ์„ ํ™œ์šฉํ•˜์—ฌ ์ „๋ฆฌ์ธต ๋ณด์ •์ •๋ณด ์—†์ด๋„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์œ„์„ฑ Code/Phase ์‹œ๊ณ„ ๋ณด์ •์ •๋ณด๋Š” ํ†ต์‹  ์ง€์—ฐ ๋ฐ ๊ณ ์žฅ ์‹œ ์šฐ์ˆ˜ํ•˜๊ณ  ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ์œ„ํ•ด ๋‹ค์ค‘ ๊ธฐ์ค€๊ตญ์˜ ๋ชจ๋“  ์ธก์ •์น˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”์ •๋œ๋‹ค. ์ด ๋•Œ ๊ฐ ๊ธฐ์ค€๊ตญ ๋ณ„ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฏธ์ง€์ •์ˆ˜ ๋•Œ๋ฌธ์— ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ๋Š” ์•ž์„œ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •๋œ ๊ธฐ์ค€๊ตญ ๊ฐ„ ์ด์ค‘์ฐจ๋ถ„ ๋œ ๋ฏธ์ง€์ •์ˆ˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์ค€์„ ์กฐ์ •ํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด ํ•ด๊ฒฐ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ƒ์„ฑ๋œ ์œ„์„ฑ Code/Phase ๋ณด์ •์ •๋ณด ๋ฉ”์‹œ์ง€์˜ ํฌ๊ธฐ, ๋ณ€ํ™”์œจ, ์žก์Œ ์ˆ˜์ค€์ด ํฌ๊ฒŒ ๊ฐœ์„ ๋˜์—ˆ๊ณ , ํ†ต์‹  ์ง€์—ฐ ์‹œ ์˜ค์ฐจ ๋ณด์ƒ ์„ฑ๋Šฅ์ด ๊ธฐ์กด RTK ํ”„๋กœํ† ์ฝœ ๋ณด๋‹ค 99% ํ–ฅ์ƒ ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋Œ€๋ฅ˜์ธต ๋ณด์ •์ •๋ณด๋Š” ์ ์€ ์ˆ˜์˜ ๊ธฐ์ค€๊ตญ ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ์ •ํ™•ํ•˜๊ฒŒ ๋Œ€๋ฅ˜์ธต์„ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด ์ž๋™ ๊ธฐ์ƒ๊ด€์ธก์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘ํ•œ ๊ธฐ์ƒ ์ •๋ณด๋ฅผ ์ถ”๊ฐ€๋กœ ํ™œ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” GNSS ๊ธฐ์ค€๊ตญ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์ •๋ฐ€ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ฐ˜์†กํŒŒ ์œ„์ƒ ๊ธฐ๋ฐ˜ ์ˆ˜์ง ๋Œ€๋ฅ˜์ธต ์ง€์—ฐ๊ณผ ๊ธฐ์ƒ์ •๋ณด ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋ง ๋œ ์ˆ˜์ง ๋Œ€๋ฅ˜์ธต ์ง€์—ฐ์„ ํ•จ๊ป˜ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ตฌ๋ฉด์กฐํ™”ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Network RTK ๋ฐ PPP-RTK ๋ณด๋‹ค ํ•„์š”ํ•œ ๋ฉ”์‹œ์ง€ ์–‘๊ณผ ๊ธฐ์ค€๊ตญ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ๊ฐ์†Œ์‹œํ‚ค๋ฉด์„œ๋„ RMS 2 cm ์ˆ˜์ค€์œผ๋กœ ์ •ํ™•ํ•œ ๋ณด์ •์ •๋ณด ์ƒ์„ฑ์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ Compact Wide-Area RTK ์‹œ์Šคํ…œ์˜ ํ•ญ๋ฒ• ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ฏธ๊ตญ ๋™๋ถ€ ์ง€์—ญ 6๊ฐœ ๊ธฐ์ค€๊ตญ์˜ ์‹ค์ธก GPS ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ…Œ์ŠคํŠธ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์€ ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ์ดํ›„ ์‚ฌ์šฉ์ž์˜ 95% ์ˆ˜ํ‰ ์œ„์น˜ ์˜ค์ฐจ 1.9 cm, 95% ์ˆ˜์ง ์œ„์น˜ ์˜ค์ฐจ 7.0 cm ๋กœ ์œ„์น˜๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒฐ์ •ํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž ๋ฏธ์ง€์ •์ˆ˜ ๊ฒฐ์ • ์„ฑ๋Šฅ์€ ๋Œ€๋ฅ˜์ธต ์•ˆ์ • ์ƒํƒœ์—์„œ ์•ฝ 2๋ถ„ ๋‚ด๋กœ 100% ์˜ ์„ฑ๊ณต๋ฅ ์„ ๊ฐ€์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์ด ํ–ฅํ›„ ํ•œ๊ตญํ˜• ์œ„์„ฑํ•ญ๋ฒ• ์‹œ์Šคํ…œ(KPS, Korean Positioning System)์˜ ์ „๊ตญ ๋‹จ์œ„ ์„ผํ‹ฐ๋ฏธํ„ฐ ๊ธ‰ ์„œ๋น„์Šค๋ฅผ ์œ„ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ™œ์šฉ๋˜๊ธฐ๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.CHAPTER 1. Introduction 1 1.1 Motivation and Purpose 1 1.2 Former Research 4 1.3 Outline of the Dissertation 7 1.4 Contributions 8 CHAPTER 2. Overview of GNSS Augmentation System 11 2.1 GNSS Measurements 11 2.2 GNSS Error Sources 14 2.2.1 Traditional GNSS Error Sources 14 2.2.2 Special GNSS Error Sources 21 2.2.3 Summary 28 2.3 GNSS Augmentation System 29 2.3.1 Satellite-Based Augmentation System (SBAS) 29 2.3.2 Real-Time Kinematic (RTK) 32 2.3.3 Precise Point Positioning (PPP) 36 2.3.4 Summary 40 CHAPTER 3. Compact Wide-Area RTK System Architecture 43 3.1 Compact Wide-Area RTK Architecture 43 3.1.1 WARTK Reference Station (WRS) 48 3.1.2 WARTK Processing Facility (WPF) 51 3.1.3 WARTK User 58 3.2 Ambiguity Resolution and Validation Algorithms of Compact Wide-Area RTK System 59 3.2.1 Basic Theory of Ambiguity Resolution and Validation 60 3.2.2 A New Ambiguity Resolution Algorithms for Multi-Frequency Signals 65 3.2.3 Extra-Wide-Lane (EWL) Ambiguity Resolution 69 3.2.4 Wide-Lane (WL) Ambiguity Resolution 71 3.2.5 Narrow-Lane (NL) Ambiguity Resolution 78 3.3 Compact Wide-Area RTK Corrections 83 3.3.1 Satellite Orbit Corrections 86 3.3.2 Satellite Code/Phase Clock (CPC) Corrections 88 3.3.3 Tropospheric Corrections 89 3.3.4 Message Design for GEO Broadcasting 90 CHAPTER 4. Code/Phase Clock (CPC) Correction Generation Algorithm 93 4.1 Former Research of RTK Correction Protocol 93 4.1.1 Observation Based RTK Data Protocol 93 4.1.2 Correction Based RTK Data Protocol 95 4.1.3 Compact RTK Protocol 96 4.2 Satellite CPC Correction Generation Algorithm 100 4.2.1 Temporal Decorrelation Error Reduced Methods 102 4.2.2 Ambiguity Level Adjustment 105 4.2.3 Receiver Clock Synchronization 107 4.2.4 Averaging Filter of Satellite CPC Correction 108 4.2.5 Ambiguity Re-Initialization and Message Generation 109 4.3 Correction Performance Analysis Results 111 4.3.1 Feasibility Test Environments 111 4.3.2 Comparison of RTK Correction Protocol 113 4.3.3 Latency Compensation Performance Analysis 116 4.3.4 Message Data Bandwidth Analysis 119 CHAPTER 5. Tropospheric Correction Generation Algorithm 123 5.1 Former Research of Tropospheric Correction 123 5.1.1 Tropospheric Corrections for SBAS 124 5.1.2 Tropospheric Corrections of Network RTK 126 5.1.3 Tropospheric Corrections of PPP-RTK 130 5.2 Tropospheric Correction Generation Algorithm 136 5.2.1 ZWD Estimation Using Carrier-Phase Observations 138 5.2.2 ZWD Measurements Using Weather Data 142 5.2.3 Correction Generation Using Spherical Harmonics 149 5.2.4 Correction Applying Method for User 157 5.3 Correction Performance Analysis Results 159 5.3.1 Feasibility Test Environments 159 5.3.2 Zenith Correction Domain Analysis 161 5.3.3 Message Data Bandwidth Analysis 168 CHAPTER 6. Compact Wide-Area RTK User Test Results 169 6.1 Compact Wide-Area RTK User Process 169 6.2 User Performance Test Results 173 6.2.1 Feasibility Test Environments 173 6.2.2 User Range Domain Analysis 176 6.2.3 User Ambiguity Domain Analysis 182 6.2.4 User Position Domain Analysis 184 CHAPTER 7. Conclusions 189 Bibliography 193 ์ดˆ ๋ก 207Docto

    NASA's Optical Program on Ascension Island: Bringing MCAT to Life as the Eugene Stansbery-Meter Class Autonomous Telescope (ES-MCAT)

    Get PDF
    In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs)

    Report on IOCCG Workshop Phytoplankton Composition from Space: towards a validation\ud strategy for satellite algorithms

    Get PDF
    The IOCCG-supported workshop โ€œPhytoplankton Composition from Space: towards a validation strategy for satellite algorithmsโ€ was organized as a follow-up to the Phytoplankton Functional Types from Space splinter session, held at the International Ocean Colour Science Meeting (Germany, 2013). The specific goals of the workshop were to: 1. Provide a summary of the status of activities from relevant IOCCG working groups, the 2nd PFT intercomparison working group, PFT validation data sets and other research developments. 2. Provide a PFT validation strategy that considers the different applications of PFT products: and seeks community consensus on datasets and analysis protocols. 3. Discuss possibilities for sustaining ongoing PFT algorithm validation and intercomparison activities. The workshop included 15 talks, breakout sessions and plenary discussions. Talks covered community algorithm intercomparison activity updates, review of established and novel methods for PFT validation, validation activities for specific applications and space-agency requirements for PFT products and validation. These were followed by general discussions on (a) major recommendations for global intercomparison initiative in respect to validation, intercomparison and userโ€™s guide; (b) developing a community consensus on which data sets for validation are optimal and which measurement and analysis protocols should be followed to support sustained validation of PFT products considering different applications; (c) the status of different validation data bases and measurement protocols for different PFT applications, and (d) engagement of the various user communities for PFT algorithms in developing PFT product specifications. From these discussions, two breakout groups provided in depth discussion and recommendations on (1) validation of current algorithms and (2) work plan to prepare for validation of future missions. Breakout group 1 provided an action list for progressing the current international community validation and intercomparison activity. Breakout group 2 provided the following recommendations towards developing a future validation strategy for satellite PFT products: 1. Establish a number of validation sites that maintain measurements of a key set of variables. 2. This set of variables should include: โ€ข Phytoplankton pigments from HPLC, phycobilins from spectrofluorometry โ€ข Phytoplankton cell counts and ID, volume / carbon estimation and imaging (e.g. from flow cytometry, FlowCam, FlowCytobot type technologies) โ€ข Inherent optical properties (e.g. absorption, backscattering, VSF) โ€ข Hyperspectral radiometry (both above and in-water) โ€ข Particle size distribution โ€ข Size-fractionated measurements of pigments and absorption โ€ข Genetic / -omics data 3. Undertake an intercomparison of methods / instruments over several years at a few sites to understand our capabilities to fully characterize the phytoplankton community. 4. Organise workshops to address the following topics: โ€ข Techniques for particle analysis, characterization and classification โ€ข Engagement with modellers and understanding end-user requirements โ€ข Data storage and management, standards for data contributors, data challenges In conclusion, the workshop was assessed to have fulfilled its goals. A follow-on meeting will be organized during the International Ocean Colour Science Meeting 2015 in San Francisco. Specific follow-on actions are listed at the end of the report

    Geospatial Approaches to Support Pelagic Conservation Planning and Adaptive Management

    Get PDF
    Place-based management in the open ocean faces unique challenges in delineating boundaries around temporally and spatially dynamic systems that span broad geographic scales and multiple management jurisdictions, especially in the \u27high seas\u27. Geospatial technologies are critical for the successful design of pelagic conservation areas, because they provide information on the spatially and temporally dynamic oceanographic features responsible for driving species distribution and abundance in the open ocean, the movements of protected species, and the spatial patterns of distribution of potential threats. Nevertheless, there are major challenges to implementing these geospatial approaches in the open ocean. This Theme Section seeks to bridge the gap between geospatial science and marine conservation by discussing the use of innovative approaches to support effective marine conservation planning strategies for pelagic ecosystems. We highlight the results of this collection of contributions in 3 main sections: (1) conceptual advances in pelagic conservation; (2) novel information technologies and methodologies; and (3) case studies in the California Current and Pacific Ocean

    Earth Resources: A continuing bibliography with indexes, issue 17

    Get PDF
    This bibliography lists 775 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1978. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • โ€ฆ
    corecore