53,396 research outputs found

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    Learning Scheduling Algorithms for Data Processing Clusters

    Full text link
    Efficiently scheduling data processing jobs on distributed compute clusters requires complex algorithms. Current systems, however, use simple generalized heuristics and ignore workload characteristics, since developing and tuning a scheduling policy for each workload is infeasible. In this paper, we show that modern machine learning techniques can generate highly-efficient policies automatically. Decima uses reinforcement learning (RL) and neural networks to learn workload-specific scheduling algorithms without any human instruction beyond a high-level objective such as minimizing average job completion time. Off-the-shelf RL techniques, however, cannot handle the complexity and scale of the scheduling problem. To build Decima, we had to develop new representations for jobs' dependency graphs, design scalable RL models, and invent RL training methods for dealing with continuous stochastic job arrivals. Our prototype integration with Spark on a 25-node cluster shows that Decima improves the average job completion time over hand-tuned scheduling heuristics by at least 21%, achieving up to 2x improvement during periods of high cluster load

    Focus of attention in an activity-based scheduler

    Get PDF
    Earlier research in job shop scheduling has demonstrated the advantages of opportunistically combining order-based and resource-based scheduling techniques. An even more flexible approach is investigated where each activity is considered a decision point by itself. Heuristics to opportunistically select the next decision point on which to focus attention (i.e., variable ordering heuristics) and the next decision to be tried at this point (i.e., value ordering heuristics) are described that probabilistically account for both activity precedence and resource requirement interactions. Preliminary experimental results indicate that the variable ordering heuristic greatly increases search efficiency. While least constraining value ordering heuristics have been advocated in the literature, the experimental results suggest that other value ordering heuristics combined with our variable-ordering heuristic can produce much better schedules without significantly increasing search

    Meta-heuristics for stable scheduling on a single machine.

    Get PDF
    This paper presents a model for single-machine scheduling with stability objective and a common deadline. Job durations are uncertain, and our goal is to ensure that there is little deviation between planned and actual job starting times. We propose two meta-heuristics for solving an approximate formulation of the model that assumes that exactly one job is disrupted during schedule execution, and we also present a meta-heuristic for the global problem with independent job durationsMeta-heuristics; Robustness; Single-machine scheduling; Uncertainty;

    Permutation Flowshop Scheduling with Earliness and Tardiness Penalties

    Get PDF
    We address the permutation flowshop scheduling problem with earliness and tardiness penalties (E/T) and common due date of jobs. Large number of process and discrete parts industries follow flowshop type of production process. There are very few results reported for multi-machine E/T scheduling problems. We show that the problem can be sub-divided into three groups- one, where the due date is such that all jobs are necessarily tardy; the second, where the due date is such that it is not tight enough to act as a constraint on scheduling decision; and the third is a group of problems where the due date is in between the above two. We develop analytical results and heuristics for problems arising in each of these three classes. Computational results of the heuristics are reported. Most of the problems in this research are addressed for the first time in the literature. For problems with existing heuristics, the heuristic solution is found to perform better than the existing results.

    Learning to improve iterative repair scheduling

    Get PDF
    This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone
    corecore