9,305 research outputs found

    Min-Max Regret Scheduling To Minimize the Total Weight of Late Jobs With Interval Uncertainty

    Full text link
    We study the single machine scheduling problem with the objective to minimize the total weight of late jobs. It is assumed that the processing times of jobs are not exactly known at the time when a complete schedule must be dispatched. Instead, only interval bounds for these parameters are given. In contrast to the stochastic optimization approach, we consider the problem of finding a robust schedule, which minimizes the maximum regret of a solution. Heuristic algorithm based on mixed-integer linear programming is presented and examined through computational experiments

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Single machine scheduling problems with uncertain parameters and the OWA criterion

    Get PDF
    In this paper a class of single machine scheduling problems is discussed. It is assumed that job parameters, such as processing times, due dates, or weights are uncertain and their values are specified in the form of a discrete scenario set. The Ordered Weighted Averaging (OWA) aggregation operator is used to choose an optimal schedule. The OWA operator generalizes traditional criteria in decision making under uncertainty, such as the maximum, average, median or Hurwicz criterion. It also allows us to extend the robust approach to scheduling by taking into account various attitudes of decision makers towards the risk. In this paper a general framework for solving single machine scheduling problems with the OWA criterion is proposed and some positive and negative computational results for two basic single machine scheduling problems are provided

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Preemptive Scheduling of Equal-Length Jobs to Maximize Weighted Throughput

    Full text link
    We study the problem of computing a preemptive schedule of equal-length jobs with given release times, deadlines and weights. Our goal is to maximize the weighted throughput, which is the total weight of completed jobs. In Graham's notation this problem is described as (1 | r_j;p_j=p;pmtn | sum w_j U_j). We provide an O(n^4)-time algorithm for this problem, improving the previous bound of O(n^{10}) by Baptiste.Comment: gained one author and lost one degree in the complexit
    • …
    corecore