7 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler

    Code generation for multi-phase tasks on a multi-core distributed memory platform

    Get PDF
    International audienceEnsuring temporal predictability of real-time systems on a multi-core platform is difficult, mainly due to hard to predict delays related to shared access to the main memory. Task models where computation phases and communication phases are separated (such as the PRedictable Execution Model), have been proposed to both mitigate these delays and make them easier to analyze. In this paper we present a compilation process, part of the Prelude compiler, that automatically translates a high-level synchronous data-flow system specification into a PREM-compliant C program. By automating the production of the PREM-compliant C code, low-level implementation concerns related to task communications become the responsibility of the compiler, which saves tedious and error-prone development efforts

    Models for Deterministic Execution of Real-Time Multiprocessor Applications

    No full text
    International audienceWith the proliferation of multi-cores in embedded real-time systems, many industrial applications are being (re-)targeted to multiprocessor platforms. However, exactly reproducible data values at the outputs as function of the data and timing of the inputs is less trivial to realize in multiprocessors, while it can be imperative for various practical reasons. Also for parallel platforms it is harder to evaluate the task utilization and ensure schedulability, especially for end-to-end communication timing constraints and aperiodic events. Based upon reactive system extensions of Kahn process networks, we propose a model of computation that employs synchronous events and event priority relations to ensure deterministic execution. For this model, we propose an online scheduling policy and establish a link to a well-developed scheduling theory. We also implement this model in publicly available prototype tools and evaluate them on state-of-the art multi-core hardware, with a streaming benchmark and an avionics case study

    Latency upper bound for data chains of real-time periodic tasks

    Get PDF
    International audienceThe inter-task communication in embedded real-time systems can be achieved using various patterns and be subject to different timing constraints. One of the most basic communication patterns encountered in today's automotive and aerospace software is the data chain. Each task of the chain reads data from the previous task and delivers the results of its computation to the next task. The data passing does not affect the execution of the tasks that are activated periodically at their own rates. As there is no task synchronization, a task does not wait for its predecessor data; it may execute with old data and get new data at its later release. From the design stage of embedded real-time systems, evaluating if data chains meet their timing requirements, such as the latency constraint, is of the highest importance. The trade-off between accuracy and complexity of the timing analysis is a critical element in the optimization process. In this paper, we consider data chains of real-time periodic tasks executed by a fixed-priority preemptive scheduler upon a single processor. We present a method for the worst-case latency calculation of periodic tasks' data chains. As the method has an exponential time complexity, we derive a polynomial-time upper bound. Evaluations carried out on an automotive benchmark demonstrate that the average bound overestimation is less than 10 percent of the actual value

    Programmation sûre de plates-formes embarquées de type multi/pluri-cœurs

    Get PDF
    The purpose of this document is to describe an overview of my work on the topic of "programming mutli/many-core COTS in the context of aeronautics" and to propose future research work.L’objectif de ce document est de décrire une synthèse des travaux que j’ai menés autour du thème de "la programmation sûre de plates-formes embarquées" et de proposer des perspectives de recherche pour les années à venir

    Scheduling dependent periodic tasks without synchronization mechanisms

    No full text
    Abstract—This article studies the scheduling of critical embedded systems, which consist of a set of communicating periodic tasks with constrained deadlines. Currently, tasks are usually sequenced manually, partly because available scheduling policies do not ensure the determinism of task communications. Ensuring this determinism requires scheduling policies supporting task precedence constraints (which we call dependent tasks), which are used to force the order in which communicating tasks execute. We propose fixed priority scheduling policies for different classes of dependent tasks: with simultaneous or arbitrary release times, with simple precedences (between tasks of the same period) or extended precedences (between tasks of different periods). We only consider policies that do not require synchronization mechanisms (like semaphores). This completely prevents deadlocks or scheduling anomalies without requiring further proofs. I
    corecore