3 research outputs found

    Fast network configuration in Software Defined Networking

    Get PDF
    Software Defined Networking (SDN) provides a framework to dynamically adjust and re-program the data plane with the use of flow rules. The realization of highly adaptive SDNs with the ability to respond to changing demands or recover after a network failure in a short period of time, hinges on efficient updates of flow rules. We model the time to deploy a set of flow rules by the update time at the bottleneck switch, and formulate the problem of selecting paths to minimize the deployment time under feasibility constraints as a mixed integer linear program (MILP). To reduce the computation time of determining flow rules, we propose efficient heuristics designed to approximate the minimum-deployment-time solution by relaxing the MILP or selecting the paths sequentially. Through extensive simulations we show that our algorithms outperform current, shortest path based solutions by reducing the total network configuration time up to 55% while having similar packet loss, in the considered scenarios. We also demonstrate that in a networked environment with a certain fraction of failed links, our algorithms are able to reduce the average time to reestablish disrupted flows by 40%

    Coeus: Consistent and Continuous Network Update in Software-Defined Networks:38th IEEE Conference on Computer Communications, INFOCOM 2020

    Get PDF
    Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance via southbound APIs. The single update between the initial and the final network states fail to handle high-frequency changes or the burst event during the update procedure in time, leading to prolonged update time and inefficiency. On the contrary, the continuous update can respond to the network condition changes at all times. However, existing work, especially Update Algebra can only guarantee blackhole- and loop-free. The congestion-free property cannot be respected during the update procedure. In this paper, we propose Coeus, a continuous network update system while maintaining blackhole-, loop- and congestion-free simultaneously. Firstly, we establish an operation-based continuous update model. Based on this model, we dynamically reconstruct an operation dependency graph to capture unexecuted update operations and the link utilization variations. Subsequently, we develop an operation composition algorithm to eliminate redundant update commands and an operation node partition algorithm to speed up the update procedure. We prove that the partition algorithm is optimal and can guarantee the consistency. Finally, extensive evaluations show that Coeus can improve the makespan by at least 179% compared with state-of-the-art approaches when the arrival rate of update events equals to three times per second. © 2020 IEEE

    Continuous Network Update With Consistency Guaranteed in Software-Defined Networks

    Get PDF
    Network update enables Software-Defined Networks (SDNs) to optimize the data plane performance. The single update focuses on processing one update event at a time, i.e., updating a set of flows from their initial routes to target routes, but it fails to handle continuously arriving update events in time incurred by high-frequency network changes. On the contrary, the continuous update proposed in ``Update Algebra'' can handle multiple update events concurrently and respond to the network condition changes at all times. However, ``Update Algebra'' only guarantees the blackhole-free and loop-free update. The congestion-free property cannot be respected. In this paper, we propose Coeus to achieve the continuous update while maintaining consistency, i.e., ensuring the blackhole-free, loop-free, and congestion-free properties simultaneously. Firstly, we establish the continuous update model based on the update operations in update events. With the update model, we dynamically reconstruct the operation dependency graph (ODG) to capture the relationship between update operations and link utilization variations. Then, we develop a composition algorithm to eliminate redundant operations in update events. To further speed up the update procedure, we present a partition algorithm to split the operation nodes of the ODG into a series of suboperation nodes that can be executed independently. The partition algorithm is proven to be optimal. Finally, extensive evaluations show that Coeus can improve the update speed by at least 179% and reduce redundant operations by at least 52% compared with state-of-the-art approaches when the arrival rate of update events equals three times per second. IEE
    corecore