6 research outputs found

    Scheduling in an assembly-type production chain with batch transfer

    Get PDF
    Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Model approximation for batch flow shop scheduling with fixed batch sizes

    Get PDF
    Batch flow shops model systems that process a variety of job types using a fixed infrastructure. This model has applications in several areas including chemical manufacturing, building construction, and assembly lines. Since the throughput of such systems depends, often strongly, on the sequence in which they produce various products, scheduling these systems becomes a problem with very practical consequences. Nevertheless, optimally scheduling these systems is NP-complete. This paper demonstrates that batch flow shops can be represented as a particular kind of heap model in the max-plus algebra. These models are shown to belong to a special class of linear systems that are globally stable over finite input sequences, indicating that information about past states is forgotten in finite time. This fact motivates a new solution method to the scheduling problem by optimally solving scheduling problems on finite-memory approximations of the original system. Error in solutions for these “t-step” approximations is bounded and monotonically improving with increasing model complexity, eventually becoming zero when the complexity of the approximation reaches the complexity of the original system.United States. Department of Homeland Security. Science and Technology Directorate (Contract HSHQDC-13-C-B0052)United States. Air Force Research Laboratory (Contract FA8750-09-2-0219)ATK Thiokol Inc

    Scheduling batches with sequential job processing for two-machine flow and open shops

    No full text
    n this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
    corecore