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Abstract Batch flow shops model systems that process a variety of job types using a fixed
infrastructure. This model has applications in several areas including chemical manufac-
turing, building construction, and assembly lines. Since the throughput of such systems
depends, often strongly, on the sequence in which they produce various products, scheduling
these systems becomes a problem with very practical consequences. Nevertheless, opti-
mally scheduling these systems is NP-complete. This paper demonstrates that batch flow
shops can be represented as a particular kind of heap model in the max-plus algebra. These
models are shown to belong to a special class of linear systems that are globally stable over
finite input sequences, indicating that information about past states is forgotten in finite
time. This fact motivates a new solution method to the scheduling problem by optimally
solving scheduling problems on finite-memory approximations of the original system. Error
in solutions for these “t-step” approximations is bounded and monotonically improving
with increasing model complexity, eventually becoming zero when the complexity of the
approximation reaches the complexity of the original system.
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1 Introduction

Production systems have a rich history and employ a variety of mathematical models
to understand their dynamics. The batch flow shop model is a general model class that
represents the production of multiple products, generally referred to a job types, using a
fixed infrastructure, or set of resources or machines. The complexities of these systems
make it difficult to characterize and analyze these models. Nevertheless, the batch flow shop
model is useful for several applications, including flowshops, chemical processing plants,
and various services. Some specific examples of these application areas are pharmaceutical
production, propellant manufacturing, building construction, and assembly lines.

One of the key questions one would like to understand in a production system is how to
optimally schedule factory resources when processing a suite of job types. This turns out to
be a hard problem. Nevertheless, a variety of models and simplifications have been studied
to gain insight about this problem, including exact methods attempting to solve large integer
programs (Rich and Prokopakis 1986; Kondili et al. 1993) and the scheduling of a single
machine (French 1982; Parker 1995; Pinedo 2005). Many different objectives are specified
in Pinedo (2005); these objectives introduce ideas such as minimum makespan, maximum
throughput, minimum (weighted) tardiness, minimum lead time, and so on. In van Eekelen
et al. (2006) and Boccadoro and Valigi (2003) an optimal 2-product cyclical schedule is
determined for a single machine with setup costs. A natural extension to this problem is
that of scheduling a job shop with multiple machines. The problem of scheduling several
jobs on a set of machines with infinite queues is covered extensively in Pinedo (2005).
Other models include a method of treating manufacturing systems as continuous systems in
time and controlling them using linear programming is given in van Eekelen et al. (2005),
and the so-called “hot ingot” problem, or continuous processing flowshop, which requires
a scheduled job to move to the next machine in its route with no delay. The “hot ingot”
problem is shown to be equivalent to a single machine with sequence dependent setup times
in Reddi and Ramamoorthy (1972). When sequence dependent setup times are added to
the flowshop, the sequencing problem is shown to be equivalent to a traveling salesman
problem in Gupta (1986). Savkin (2003) considers scheduling a “flexible manufacturing”
system, where multiple job types are processed on the same set of machines. Nevertheless,
in this work, unbounded buffers are included between each machine, effectively decoupling
the interprocessing dynamics.

A more complex environment, and the one we consider, is that with batching machines.
Batching machines may process several jobs of a given type simultaneously, but each
machine has a fixed batch capacity. Scheduling these systems breaks down into two main
problems that need to be solved: lot sizing and scheduling. The lot sizing problem is to deter-
mine how many jobs to process at a given time and is discussed in Deng et al. (2002), Dupont
and Dhaenens-Flipo (2002) and Glass et al. (2001). The sequencing problem is to determine
the order in which to process the jobs to optimize some objective. For our work, we assume
that the lot sizing problem has been solved, meaning the capacities of the machines is deter-
mined a priori. Since lot sizes are fixed, solving the sequencing problem is all that is needed
to solve the scheduling problem, and we will therefore use these terms interchangeably. As
with the job shop, there has been considerable effort studying situations where one or two
batching machines are present, such as Cheng et al. (2004), Hochbaum and Landy (1997),
Lin and Cheng (2001) and Dobson and Nambimadom (2001). In Cheng et al. (2004) a vari-
ation of the single machine batch scheduling problem is shown to be NP-Hard. A branch
and bound algorithm for lot-sizing and scheduling of a single batch machine is given in
Jordan and Drexl (1998). A two-machine factory is considered in Ahmadi et al. (1992)
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where one or both machines is a batch machine. These authors consider the sequencing of
jobs in the system using full batches and permutation schedules. However, they are limited
to two machines and only one machine per workstation. They also simplify the problem by
considering a batch machine that has a constant running time for any batch of jobs. Graphi-
cal solutions to the general multipurpose batch plant are given in Sanmartı́ et al. (2002), Rich
and Prokopakis (1986) and Kondili et al. (1993), but since these methods are exact, they are
also computationally intractable for a complex manufacturing system. Two heuristic meth-
ods of solution to the minimum makespan problem are given in Blömer and Günther (1998),
the better of the two reduces decision variables in the MILP by a linear factor. Although
this does allow for the solution of more complex problems, it is still difficult to compute the
makespan for a manufacturing system containing a workstation with a much larger capac-
ity or longer processing time than another workstation. Other approaches to scheduling
include solving a stochastic integer programming problem, Sand and Engell (2004), and a
hybrid constraint logic programming (CLP) and mixed integer linear programming (MILP)
approach, Roe et al. (2005). Bemporad (2003) and Corona et al. (2005) consider optimiza-
tion in the face of quantization and partition the state space offline to facilitate fast decision
making.

Much of the analysis and modeling of job shops and manufacturing systems is done using
discrete event systems. Multipurpose batch manufacturing systems are modeled as Petri nets
in Riera et al. (2005), Yajima et al. (2004), López-Mellado et al. (2005). An optimization
procedure for Petri nets is also given in Riera et al. (2005), however, it is exact and thus not
tractable for complex systems, so they offer a tree pruning heuristic to reduce the search
time. A method for representing Petri nets as heaps of pieces in the max-plus algebra is given
in Gaubert and Mairesse (1999), and much of our work is built on this foundation. Certain
discrete event processes are shown to be linear in the max-plus algebra in Cohen et al.
(1985) and Baccelli et al. (1992). They note that this is useful for performance evaluation
in manufacturing. Other approaches to scheduling using max-plus models include Yurdakul
and Odrey (2004), Bouquard et al. (2006a), Bouquard et al. (2006b), and Van den Boom
and De Schutter (2006).

In this work we show that a batch flow shop can be modeled as an input quantized system
in the max-plus algebra. This development is done by modeling the system as a heap of
“non-rigid” pieces, in stark contrast to previous work using heaps of “rigid blocks”. Doing
this, we show that the batch flow shop models are a subset of a larger class of systems in the
max-plus algebra, a class that can be shown to be globally stable over finite-length inputs.
This stability property causes these systems to forget initial condition information in a finite
number of steps and motivates our approximation method. Our approach is to optimally
solve the sequencing problem for asimplifiedmodel of the batch flow shop (Beck et al. 1996;
Dullerud and Paganini 2000). The organization of this paper is as follows. We first present
the max-plus algebra. This allows us to introduce the batch flow shop model and represent it
as a max-plus dynamical system. We show that batch flow shops are a subset of a largerclass
of systems in the max-plus algebra that exhibit a particular structure. We then show that
any system in this class exhibits a form of stability. We finally present our method of model
approximation over this class of systems and show that this method has bounded error.

2 Max-plus algebra preliminaries

This work draws from the standard heaps of pieces or heap model that is described using the
max-plus algebra, see for example Gaubert and Mairesse (1999), Heidergott et al. (2006).
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These models describe situations like the popular Tetris game, where pieces of vari-
ous shapes and orientations pile up vertically. This stacking mechanism is conveniently
described as a linear system defined over the max-plus (or sometimes called tropical)
semiring, described briefly below, along with definitions of system stability and various
performance measures.

2.1 Background and notation

Definition 1 The (max, +) semiring, Rmax, is the set R ∪ {−∞,+∞}, equipped with the
operations

1. ⊕, where a ⊕ b := max(a, b),
2. ⊗, where a ⊗ b := a + b,

where R is the set of real numbers. Note that often the symbol Rmax is used to indicate the
complete (max, +) semiring, defined over R ∪ {−∞,+∞}, but in this work, where there
should be no confusion about the meaning, we remove the overline to simplify notation.
Also, note that this semiring is idempotent, since x ⊕ x = x for all x ∈ Rmax; the zero
element is negative infinity, denoted ε; and the unit element is zero, denoted e. Moreover, in
this work, we will further consider the multiplicative inverse operation, �, where a � b :=
a − b for all {a, b} ∈ Rmax, making Rmax a semifield. Throughout this paper we will
use the convention ε � ε = ε, suggesting that for any y ∈ Rmax, the indeterminate form
y ⊕ (ε � ε) = y.

Matrix arithmetic is also defined over the (max,+) semiring. For matrices, A, B ∈ R
n×l
max,

C ∈ R
l×m
max we define the operations:

[A ⊕ B]ij := aij ⊕ bij

[B ⊗ C]ik :=
l⊕

j=1

(
bij ⊗ cjk

)
.

The zero vector, ε, and the unit vector, e, are given by

ε :=
⎡

⎢⎣
ε
...

ε

⎤

⎥⎦ , e :=
⎡

⎢⎣
e
...

e

⎤

⎥⎦ ,

where e and ε are as defined above. The identity matrix is

Imax :=

⎡

⎢⎢⎢⎣

e ε . . . ε

ε e ε
...

. . .
...

ε ε . . . e

⎤

⎥⎥⎥⎦ .

Spectral theory is well developed over the max-plus semiring. The following definition
will be useful in the subsequent development in later sections.

Definition 2 (Heidergott et al. 2006) Let A ∈ R
n×n
max be a square matrix. If μ ∈ Rmax is a

scalar and v ∈ R
n
max is a vector that contains at least one finite element such that

A ⊗ v = μ ⊗ v,

then μ is called an eigenvalue of A and v an eigenvector of A associated with eigenvalue μ.
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We can now define a linear state-space system in the max-plus algebra. For x(k) ∈ R
n
max,

k ∈ N, where N denotes the non-negative integers, and A ∈ R
n×n
max , the sequence generated

by the recursion,
x(k + 1) = A ⊗ x(k), (1)

is well-defined and characterized by

x(k) = A⊗kx0,

where x(0) = x0 ∈ R
n
max is the initial condition, and A⊗k denotes the matrix A raised to the

kth power, in the max-plus sense of matrix multiplication.
Similarly, if the system is time-varying, such as

x(k + 1) = A(k) ⊗ x(k), (2)

the solution is well-defined and characterized by

x(k) =
(

k−1⊗

i=0

A(i)

)
x0,

where x(0) = x0 ∈ R
n
max is the initial condition.

2.2 Rigid-block heap models

These max-plus linear systems, such as that in Eq. 2), are the basis for a standard heap model
(Gaubert and Mairesse 1999) that describes the surface of a pile of predefined, rigid blocks,
or pieces. Like the game Tetris, imagine a stack of blocks that have piled up vertically, as
in Fig. 2. Unlike the Tetris game, however, these blocks do not rotate or move horizontally;
each block is characterized by a well-defined shape over specific columns. We associate,
then, each block with a particular matrix, A(i) ∈ R

n×n
max , i = 1, . . . , m, where m is the total

number of distinct block types, and the vector x(k) ∈ R
n
max describes the height of the stack

in each of the n columns after the kth block is added to the pile. The max-plus linear system
(2) computes the changing surface vector, x as each new block is added (Fig 1).

(a) Shape of block a (b) Shape of block b (c) Shape of block c

Fig. 1 Block shapes for 3-block heap system example
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For example, consider the 3-block system characterized in Table 1. In this system, there
are three distinct shapes of blocks, labeled a, b and c, constructed over three columns. Two
vectors in R

3
max characterize each block by defining its upper contour, u(p), and lower

contour, l(p), and these contour vectors are then used to construct a matrix, A(p), associated
with each block type, p ∈ {a, b, c}, as follows:

[A(p)]ij =
⎧
⎨

⎩

ui (p) − lj (p) if i, j ∈ R(p)

e if i = j , i /∈ R(p)

ε otherwise
(3)

where R(p) is the set of columns occupied by block type p.
Starting from an “empty floor,” x(0) = [

0 0 0
]T

, the changing surface of the stack
of blocks, or heap, driven by the input sequence a,b,c is then captured by the dynamics
described in Eq. 2 as follows:

⎡

⎣
x1(1)

x2(1)

x3(1)

⎤

⎦ =
⎡

⎣
1 e −1
2 1 e

5 4 3

⎤

⎦⊗
⎡

⎣
0
0
0

⎤

⎦ =
⎡

⎣
1
2
5

⎤

⎦ ,

⎡

⎣
x1(2)

x2(2)

x3(2)

⎤

⎦ =
⎡

⎣
1 e −1
2 1 e

3 2 1

⎤

⎦⊗
⎡

⎣
1
2
5

⎤

⎦ =
⎡

⎣
4
5
6

⎤

⎦ ,

⎡

⎣
x1(3)

x2(3)

x3(3)

⎤

⎦ =
⎡

⎣
3 e −1
4 1 e

5 2 1

⎤

⎦⊗
⎡

⎣
4
5
6

⎤

⎦ =
⎡

⎣
7
8
9

⎤

⎦ .

This sequence of blocks a,b,c, results in the surface vector x(3) = [ 7 8 9
]T

, as illustrated
in Fig. 2.

2.3 Stability and performance measures

Throughout this paper we will be interested in the behavior of max-plus linear systems, such
as that in Eq. 2, for large k. The following definitions will help clarify the resulting analysis
(Table 2).

Table 1 Mathematical modeling of a 3-block system

Block Upper contour Lower contour Matrix representation

a u(a) =
⎡

⎢⎣
1

2

5

⎤

⎥⎦ l(a) =
⎡

⎢⎣
e

1

2

⎤

⎥⎦ A(a) =
⎡

⎢⎣
1 e −1

2 1 e

5 4 3

⎤

⎥⎦

b u(b) =
⎡

⎢⎣
1

2

3

⎤

⎥⎦ l(b) =
⎡

⎢⎣
e

1

2

⎤

⎥⎦ A(b) =
⎡

⎢⎣
1 e −1

2 1 e

3 2 1

⎤

⎥⎦

c u(c) =
⎡

⎢⎣
3

4

5

⎤

⎥⎦ l(c) =
⎡

⎢⎣
e

3

4

⎤

⎥⎦ A(c) =
⎡

⎢⎣
3 e −1

4 1 e

5 2 1

⎤

⎥⎦
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Fig. 2 Heap resulting from
stacking blocks a, b, and c

Definition 3 The system given by Eq. 1 and characterized by the matrix A ∈ R
n×n
max is said

to be globally stable if, for any initial condition x(0):

∃N ∈ N and unique v1, ..., vn ∈ R such that k ≥ N =⇒ xi(k) � x1(k) = vi,

where N is understood to be the set of natural numbers.

Global stability implies that, after a finite number of steps, the relative distance among
the elements of x(k) remains fixed as k → ∞. This suggests a notion of convergence in a
projective space, formed as the quotient space of Rn

max by a particular equivalence relation
(see Section 1.4 in Heidergott et al. (2006) for details). In particular, while the values of
the elements of the state vector of a globally stable system may grow without bound, the
relative differences among elements of x remain constant after some initial transient period.
Moreover, this limiting behavior of x is unique, independent of the initial condition.

In addition to the limiting behavior characterized by global stability, we will also be
interested in various measures characterizing the quality of our approximations. In particu-
lar, we will abuse notation and consider the following functions that are not norms, but are
reminiscent of these measures and will be useful in the sequel.

Table 2 Comparing rigid-block heap matrices with flow shop heap matrices

Block Upper contour Lower contour Rigid-block matrix Flow shop matrix

a u(a) =
⎡

⎢⎣
1

2

5

⎤

⎥⎦ l(a) =
⎡

⎢⎣
e

1

2

⎤

⎥⎦ A(a) =
⎡

⎢⎣
1 e −1

2 1 e

5 4 3

⎤

⎥⎦ A(a) =
⎡

⎢⎣
1 e ε

2 1 e

5 4 3

⎤

⎥⎦

b u(b) =
⎡

⎢⎣
1

2

3

⎤

⎥⎦ l(b) =
⎡

⎢⎣
e

1

2

⎤

⎥⎦ A(b) =
⎡

⎢⎣
1 e −1

2 1 e

3 2 1

⎤

⎥⎦ A(b) =
⎡

⎢⎣
1 e ε

2 1 e

3 2 1

⎤

⎥⎦

c u(c) =
⎡

⎢⎣
3

4

5

⎤

⎥⎦ l(c) =
⎡

⎢⎣
e

3

4

⎤

⎥⎦ A(c) =
⎡

⎢⎣
3 e −1

4 1 e

5 2 1

⎤

⎥⎦ A(c) =
⎡

⎢⎣
3 e ε

4 1 e

5 2 1

⎤

⎥⎦
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Definition 4 The 1-measure of a max-plus vector, b ∈ R
n
max is

||b||1max =
n⊕

i=1

bi = eT ⊗ b.

Note that this function returns the maximum element of a vector. Moreover, this function
induces a similar function on a matrix.

Definition 5 The max-plus 1-induced measure of a matrix A ∈ R
n×m
max is

||A||1max = max
x∈Rm×1

max ,x�=ε

(||A ⊗ x||1max � ||x||1max ).

Lemma 1 Given a matrix A ∈ R
n×m
max , the max-plus 1-induced measure of A is equivalent

to its largest element:

||A||1max = max
ij

aij .

Proof Let A ∈ R
n×m
max be given. Without loss of generality, we will say that ||x||1max = e.

Note that ||A ⊗ x||1max = eT ⊗ A ⊗ x. The vector vT =: eT ⊗ A is the vector con-
taining the max element of each column of A. Therefore, we want to maximize vT ⊗ x.
Because ||x||1max = e, the largest element in x is e. To maximize vT ⊗ x, we want to make
each element of x as large as possible; this means we set x = e which gives vT ⊗ x =
maxij aij .

By this theorem, we see that the max-plus 1-induced measure of a matrix is very simple
to compute. We are also interested in a similar quantity, minx ‖A ⊗ x‖1max � ‖x‖1max . This
quantity is also simple to compute.

Lemma 2 Given a matrix A ∈ R
n×m
max ,

min
x∈Rm×1

max ,x�=ε

(||A ⊗ x||1max � ||x||1max

) = min
i

[
eT ⊗ A

]

i
.

Proof Let A ∈ R
n×m
max be given. Without loss of generality, let ||x||1max = e and consider

vT ⊗ x with vT =: eT ⊗ A. Now we want to minimize vT ⊗ x, so we want each element
of x as small as possible. However, having ||x||1max = e requires at least one element of x
equal to e. Thus, we need only consider each x where xi = e, and xj = ε for j �= i. So

min
x

[
vT ⊗ x

]
= min

i
(vi)

= min
i

[
eT ⊗ A

]

i
.

3 Model for a batch flow shop

Consider a batch flow shop model given by n workstations that operates on m distinct
job types. As a flow shop, each job type follows the same route through the system and
workstations are ordered accordingly. We restrict our attention to the situation where there
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is no intermediate storage between the machines (however the machines themselves can
store the load whenever necessary) and each workstation is composed of a single machine.

We focus on the sequencing problem by assuming that the lot sizing problem has previ-
ously been solved. This defines a fixed capacity for each job type, j , on each workstation i,
cij . Likewise, each job type has a fixed processing time on each workstation, τij , yielding
the recipe (c, τ )(j) for every job type j ∈ J = {1, . . . , m}.

Fixed routes, no intermediate storage, and fixed capacities restrict admissible sched-
ules for the system to be permutation schedules. That is, each workstation must follow the
same sequence of job types. Furthermore, by imposing a non-idling policy, every sequence
uniquely specifies an admissible schedule for the system.

The fact that the capacity of the first workstation is fixed for each job type implies that
commanding a particular job type requires at least the number of jobs of this type to fill
the capacity of the first workstation. Moreover, since other workstations may have different
capacities for the same job type, more than one batch may be required of the first work-
station. For example, if capacity of the second workstation is twice that of the first, then
commanding this job type will require at least two batches from the first workstation. The
least common multiple of the workstation capacities for a given job type j , called the load,
L(j), is the minimum number of jobs of this type that must be commanded to satisfy the
workstation capacities and admissibility requirements of the system. From this we see that
workstation i must process B(i) = L(j)/cij batches of job type j to complete a load.

These requirements imply that the scheduling problem consists of choosing a sequence
of loads of various job types to meet a specified quota q ∈ N

m, where N is the set of natural
numbers. Let Q = ∑m

i=1 qi . Only quotas that are integer multiples of loads for each job
type make sense. This sequence of loads, uk ∈ J , k = 0, . . . , Q, is the input to the system,
which we will represent as evolving with load-events, k, rather than in real time.

The state of the system, x(k) ∈ R
n, represents the time at which each workstation is

available for processing the kth load. The system output, y(k), represents the transition
time from state x(k) to x(k + 1), which is the time it takes to finish the (k + 1)th load
after finishing the kth load. We note that the dynamics of this system are not linear in the
convential algebra. As a result, we will characterize this system as a discrete-time dynamical
system with linear dynamics (albeit a nonlinear output function) over the max-plus semiring
as a modified heap model.

3.1 Max-plus representation

The heap model discussed previously makes a nearly ideal model for the flow shop
described above. In the heap model, blocks are defined by their shape, characterized by
height over a fixed set of columns. In the flow shop, each load is also defined by a shape,
characterized by the amount of time it requires from each workstation, over a fixed set of
workstations. We see, then, that the state of the system, x(k) ∈ R

n
max, representing the time

when each of the n workstations is available for processing the kth load, evolves as Eq. 2,
where each job type j ∈ J = {1, . . . , m} is associated with a matrix A(j) ∈ R

n×n
max . An

empty flow shop begins from x(0) = e and processes Q loads, defining a sequence x(k),
k = 0, ..., Q − 1, to meet its quota.

There are some important differences, however, between the rigid-block heap model
discussed previously, and a heap model capable of describing the dynamics of the flow shop
described above. First, in the flow shop considered here, a non-idling policy is enforced.
This ensures that every sequence of loads generates a unique admissible schedule, thereby
reducing the scheduling problem to a sequencing problem. It also implies, however, that if a
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machine is available and the next load is ready, then it should start processing the next load,
which (along with the no-intermediate-storage policy) can warp the “shape” associated with
the next load.

For example, consider Fig. 2. If we associate loads with blocks, columns with worksta-
tions, and the height of a block with the time that load requires from each workstation, then
we see immediately that a non-idling policy would warp the shape of block, or load, b. This
is because workstation 1 becomes available after processing its first load (of job-type a) at
time 1, so it should then immediately begin processing load b. Workstation 1 will finish
processing load b at time 2, the exact same time when workstation 2 finishes processing
load a. As a result, it will then unload b into workstation 2, which will immediately begin
processing load b. Workstation 2 will finish processing load b at time 3. Nevertheless, the
no-intermediate-storage policy indicates that Workstation 2 can not unload b until time 5,
when Workstation 3 completes its processing of load a, further warping the shape of load b.

Figure 3 illustrates how the flow shop dynamics considered here would process the three
jobs from Table 1. Notice that, unlike Fig. 2, here the blocks representing loads are not
rigid. For example, in Fig. 3b we note that, even in the same sequence, the shape of load b

can be different, depending on the state of the system when it is processed. This important
difference between the flow shop model and the rigid-block heap model enables the flow

(a) Quota {a, b, c} completed
two time units sooner than the
rigid-block heap model shown
in Figure 2.

(b) Processing an additional
load of b highlights how the
shape associated with load b
(black piece) changes due to the
non-idling and no-intermediate-
storage policies of the flow shop,
demanding a new heap model.

Fig. 3 Flow shop heap resulting from processing loads a, b, and c (left) and another load of b (right) from
the heap example in Table 1
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shop to process a given quota faster than its rigid-block counterpart. For example, in Fig. 3a,
the same sequence, a, b, and c, is completed about 22 % sooner than the rigid-block system.

The other important difference between the rigid-block heap model discussed previously,
and the flow shop model developed here, is that flow shops are characterized by the recipes
of their job types, each represented by a capacity vector and a processing-time vector,
(c, τ )(j) for every job type j ∈ J = {1, . . . , m}, while blocks are represented by upper
and lower contour vectors (see Table 1). The mapping from recipes to contours is not triv-
ial, but it is nevertheless well-defined and systematic, yielding a process for establishing a
fixed matrix A(j) ∈ R

n×n
max associated with each job type j . The remainder of the section

develops the flow shop heap model by considering both of these differences in detail.

3.2 Non-rigid heaps

Deriving the upper and lower contours characterizing the nominal “shape” of a load for a
given job type is not trivial, and this is the topic of the next section. However, if we had these
contours, u(j) and l(j), we could consider how to develop an appropriate job matrix A(j).
This job matrix needs to capture the nominal “shape” of a load for a given job type, but not
in the rigid way described previously. Instead, it needs to operate on the system state in a
manner consistent with the nominal “shape” of a given load, but also with the non-idling
and no-intermediate-storage character of the flow shop.

Surprisingly, these effects, due to non-idling and no-intermediate-storage, can be cap-
tured with a slight change to the rigid-block matrices. The key idea is to note that whenever
an entry of a rigid-block matrix is negative, this indicates that one workstation completes its
processing of a load before another workstation even starts work on the same load. In a flow
shop with non-idling and no intermediate storage, the partial decoupling of such machines
is captured by replacing the negative entry with ε.

[A(p)]ij =
⎧
⎨

⎩

ui(p) − lj (p) if ui(p) − lj (p) ≥ 0 and i, j ∈ R(p)

e if i = j , i /∈ R(p)

ε otherwise.
(4)

where R(p) is the set of workstations used by job-type p. Compare this construction proce-
dure with that for the rigid-block heap model in Eq. 3 to verify the replacement of negative
entries by ε.

By way of comparison, consider the blocks from the rigid-block example discussed pre-
viously. It is easy to contrast the block matrices derived for each set of contours and verify
that the linear max-plus system (2) generates the surface vectors suggested by Fig. 3.

Starting from an empty flow shop,” x(0) = [ 0 0 0
]T

, the changing availability of work-
stations, driven by the input sequence p(k) = abc for k = 0, 1, 2, is then captured by the
dynamics described in Eq. 2 as follows:

[
x1(1)
x2(1)
x3(1)

]
=
[

1 e ε
2 1 e
5 4 3

]
⊗
[

0
0
0

]
=
[

1
2
5

]
,

[
x1(2)
x2(2)
x3(2)

]
=
[

1 e ε
2 1 e
3 2 1

]
⊗
[

1
2
5

]
=
[

2
5
6

]
,

[
x1(3)
x2(3)
x3(3)

]
=
[

3 e ε
4 1 e
5 2 1

]
⊗
[

2
5
6

]
=
[

5
6
7

]
.
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This sequence of blocks, p(k) = abc for k = 0, 1, 2, results in the state vector x(3) =[
5 6 7

]T
, as illustrated in Fig. 3a. Adding an additional load of b then yields

⎡

⎣
x1(2)

x2(2)

x3(2)

⎤

⎦ =
⎡

⎣
1 e ε

2 1 e

3 2 1

⎤

⎦⊗
⎡

⎣
5
6
7

⎤

⎦ =
⎡

⎣
6
7
8

⎤

⎦ ,

as illustrated in Fig. 3b.
Thus we observe that a variation on the rigid-block heap model offers a new heap

model that captures the dynamics of the non-idling, no-intermediate-storage, permutation
scheduled flow shop, provided that the recipe for each product type could be successfully
translated into an upper contour and lower contour vector characterizing the demand of a
load on the various workstations. The next section explores this translation process.

3.3 Recipes to contours and heap matrices

The difficulty in translating a recipe for a given job to upper and lower contour vectors
arises primarily because of the batched nature of this type of flow shop system. Since the
capacity of a particular workstation can be different than a subsequent workstation, multiple
batches of the product may need to be processed in order to produce a single load. This,
coupled with the no-intermediate-storage policy, allows recipes to couple the demand on
workstations in complicated ways, forcing workstations to behave as fixed-capacity queues
as well as processors.

For example, consider a recipe characterized by c = [6, 2, 3]T , τ = [6, 1, 1]T . A load of
this job type begins (see Fig. 4) with a batch of 6 units processed on workstation 1 for 6 time
units. Once completed, however, not all of the 6 units can proceed to Workstation 2, since
the capacity of Workstation 2 is only 2 units. As a result, Workstation 1 continues to hold
4 units while Workstation 2 processes 2 units. At time 7, Workstation 2 then loads 2 units
into Workstation 3. However, Workstation 3 can not begin to process these units until it has
reached full capacity of 3 units, so it simply holds these units while Workstation 2 process

Fig. 4 The characteristic shape
of a single load for a job with
recipe c = [6, 2, 3]T ,
τ= [6, 1, 1]T is the combination
of processing (black), holding
processed material until a
downstream workstation is
available (medium grey), or
holding unprocessed material
until full capacity is reached
(light grey). This complicated
interaction among workstations
makes computing the upper and
lower contours for the load
nontrivial
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a second batch, leaving Workstation 1 holding 2 units. When Workstation 2 completes its
second batch, it unloads a single unit to fill Workstation 3 to a (full) capacity of 3 units.
Workstation 3 then processes its first batch while Workstation 2 waits by holding 1 unit. At
time 9, when Workstation 3 completes its first batch, Workstation 2 unloads the unit it was
holding and grabs the last 2 units that Workstation 1 was holding, relieving Workstation 1 of
any further obligation. Workstation 2 then processes its last batch, loads it into Workstation
3 which, combined with the single unit that Workstation 3 was holding, makes a full batch
for Workstation 3 to process, completing the load.

Because of this difficulty translating recipes into upper and lower contours, the algorithm
in Fig. 5 builds the A matrix for the load directly. It accomplishes this by considering the
block associated with a load as, itself, a heap of two kinds of pieces, a processing piece and
a precedence piece.

Definition 6 The matrix for the processing piece for job type j with recipe (c, τ )(j) at
workstation i, Pi(j), is constructed from the lower contour

[
ε · · · e · · · ε

]
,

where e is the ith element, and the upper contour

[
ε · · · τi(j) · · · ε

]
,

where τi(j) is the ith element.

Definition 7 The matrix for the precedence piece for job type j with recipe (c, τ )(j) at
workstation i, Ri(j), is constructed from the (equal) upper and lower contours, given by

[
ε · · · e e · · · ε

]
,

where e is the ith and i + 1th elements.

Therefore the time that workstation i spends processing a batch of job type j is repre-
sented as a piece occupying resource i with height τi(j). The matrix, Pi(j), is equal to Imax

except that [Pi(j)]ii = τi(j). Also, the precedence of workstation i over i+1 is represented
as a piece occupying resources i and i + 1 with height 0. This matrix, Ri , is equal to Imax

except that [Ri]i,i+1 = [Ri]i+1,i = e.
Using these rigid pieces and the algorithm given in Fig. 5 we can construct the non-rigid

block for a single load of a job of type j . This algorithm is a simulation of one load in the
factory. At each iteration, the algorithm checks a machine to see if it is ready to process the
load, i.e. the machine does not contain a processed load waiting to be unloaded and the load
meets its full capacity, if so, it adds a processing piece (P ) by multiplying it to the heap
matrix. If the machine has a processed load and it can unload it to the next machine, the
algorithm adds a precedence piece (R) to the heap. Finally, this algorithm arrives at a heap
matrix for a single load of product type j , which we refer to as A(j).

3.4 The flow shop model

Using the Recipe-to-Heap algorithm in Fig. 5, we can now identify a particular heap matrix,
A(j) ∈ R

n×n
max with a load of each job type j ∈ J = {1, . . . , m}. Noting that we desire
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Fig. 5 Recipe to heap algorithm

the output of our system to measure the processing time for each load, the flow shop model
then becomes:

x(k + 1) = A(p(k)) ⊗ x(k)

y(k) = ‖A(p(k)) ⊗ x(k)‖1max � ‖x(k)‖1max ,
(5)

where p(k) ∈ J = {1, . . . , m} is the input sequence of job-types. Note that this system
has linear dynamics, albeit a nonlinear output function.
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The real advantage of this model, however, comes from the fact that all admissible heap
matrices have a particular structure that guarantee certain important properties. Defining ξ

to be the column difference of A as:

ξij (A) = aij − ai,j+1,

we then have the following important class of matrices.

Definition 8 We will say that a matrix A ∈ M n ⊂ R
n×n
max if:

ai+1,j ≥ aij , i ≤ n − 1, j ≤ n, (6)

aij ≥ ai,j+1, i ≤ n, j ≤ n − 1, (7)

ξ1j (A) ≥ . . . ≥ ξnj (A), j ≤ n, (8)

aij > −∞, j ≤ i + 1, i ≤ n, j ≤ n. (9)

The main result characterizing the Flow Shop Model is expressed in the following
theorem.

Theorem 1 Given (c, τ )(j), for some j ∈ J . If we construct A(j) according to the
algorithm in Fig. 5, A(j) ∈ M n.

The proof to this theorem is in Appendix.

4 Problem formulation

Let A be a set of m distinct matrices in M n indexed by the set J = {1, . . . , m}. We
consider a class of input quantized systems of the form

x(k + 1) = A(p(k)) ⊗ x(k)

y(k) = ‖A(p(k)) ⊗ x(k)‖1max � ‖x(k)‖1max ,
(10)

where x(k) ∈ R
n, y(k) ∈ R, p(k) ∈ J , and A(p(k)) ∈ A . Batch flow shops can be

represented as systems of this form. Thus, these dynamics represent a generalization of
batch flow shops to the set M n.

Given a vector q ∈ N
m, such that Q = ∑m

i=1 qi , we say that a sequence p =
(p(0), . . . , p(|q|1 − 1)), with p(i) ∈ U is admissible if

Q−1∑

i=0

Ij (p(i)) = qj ∀ 1 ≤ j ≤ m ,

where Ij (k) is the indicator function:

Ij (k) =
{

1 if j = k,

0 otherwise.
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Characterizing admissible inputs to the system then leads to the following problem:

min
p admissible

Q−1∑

k=0

y(k)

subject to x(k + 1) = A(p(k)) ⊗ x(k)

y(k) = ‖A(p(k)) ⊗ x(k)‖1max � ‖x(k)‖1max .

(11)

When each A ∈ A represents the recipe in a batch flow shop, and q is interpreted as a
fixed quota, this problem is equivalent to the makespan minimization problem with respect
to a quota. We will now show that this problem is N P-complete, similar to what is shown
in Su and Woeginger (2011).

Proposition 1 The problem given in Eq. 11 is N P-complete.

Proof First we must show that our problem is in N P . This is trivial since an admissible
sequence can be easily constructed, and checking the solution is done by calculating xQ and
then ‖xQ‖1max � ‖x0‖1max . These can all be done in polynomial time.

To show our problem is N P-complete, we will reduce F3|block|Cmax , which is the
optimal sequencing of the 3-machine flowshop with blocking with respect to makespan,
to our problem. This problem is shown to be N P-complete in Hall and Sriskandarajah
(1996). This problem can be represented as a 3 machine batch flowshop with machine
capacities all equal. The algorithm in Fig. 5 is a polynomial time algorithm that transforms a
batch flowshop to a set of matrices in M n. Thus F3|block|Cmax is reducible to our problem
in polynomial time.

Because problem (11) is N P-complete it is already hard to solve. What makes it even
more intractable is the dependence of cost function yk on all the previous inputs. Unlike
problems like Traveling Salesperson Problem, where cost for visiting a city is known a-
priori, in this problem, the cost of a job is unknown until all the previous inputs are decided.
In this paper, we will give an approximation method for the cost function, so that it can be
calculated with the knowledge of only a few previous inputs. Then we formulate an integer
programming problem to compute a suboptimal solution. We will also show that the error
of this solution is bounded. First, we go over some of the properties of our system which
will motivate the approximation method and will be used to compute the error bounds.

5 Max-plus systems generated by M n

5.1 Properties of M n

Because of the structure of matrices in M n, it has many useful properties. In this subsection
we will show that the set M n is closed under max-plus multiplication. We will also prove
some Lemmas that will be useful in the next section.

Theorem 2 Suppose A,B ∈ M n. Then A ⊗ B ∈ M n.

Proof Let A,B ∈ M n be given. We will write C = A ⊗ B. To show that C ∈ M n, we
must show that all four equations in Definition 8 hold. We will show each individually.
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Equation 6, cij ≤ ci+1,j : Let i, j ≤ n be given. We will pick κ such that cij = aiκ ⊗bκj .
Then,

cij � ci+1,j ≤ aiκ ⊗ bκj � (ai+1,κ ⊗ bκj )

= aiκ � ai+1,κ

≤ e.

Equation 7, cij ≥ ci,j+1: Let i, j ≤ n be given. We will pick κ such that cij+1 =
aiκ ⊗ bκ,j+1. Then,

cij � ci,j+1 ≥ aiκ ⊗ bκj � (aiκ ⊗ bκ,j+1)

= bκj � bκ,j+1

≥ e.

Equation 8, cij �ci,j+1 ≥ ci+1,j �ci+1,j+1: Let i, j < n be given. We will pick κ, l, r, s

such that

cij = aiκ ⊗ bκj (12)

ci,j+1 = ail ⊗ bl,j+1 (13)

ci+1,j = ai+1,r ⊗ brj (14)

ci+1,j+1 = ai+1,s ⊗ bs,j+1. (15)

From Eqs. 12, 15 we can derive the following inequalities

aiκ � ail ≥ blj � bκj (16)

ai+1,s � ai+1,r ≥ br,j+1 � bs,j+1 (17)

bs,j+1 � bl,j+1 ≥ ai+1,l � ai+1,s (18)

bκj � brj ≥ air � aiκ . (19)

Now consider

ω =cij � ci,j+1 � (ci+1,j � ci+1,j+1)

=aiκ ⊗ bκj � ail � bl,j+1

� ai+1,r � brj ⊗ ai+1,s ⊗ bs,j+1

=(aiκ � ail) ⊗ (ai+1,s � ai+1,r )

⊗ (bs,j+1 � bl,j+1) ⊗ (bκj � brj ). (20)

From this equation we will consider two cases.
Suppose l ≤ r . Then we write

ω ≥blj � bκj ⊗ bκj � bl,j+1 (21)

⊗ br,j+1 � bs,j+1 � brj ⊗ bs,j+1

=blj � bl,j+1 � (brj � br,j+1) (22)

≥e. (23)

Where we obtain Eq. 21 by substituting Eqs. 16 and 17 into Eq. 20, Eq. 22 by canceling and
rearranging terms, and Eq. 23 by Eq. 8.



514 Discrete Event Dyn Syst (2015) 25:497–529

Suppose l > r . Then we write

ω ≥aiκ � ai+1,r ⊗ air � aiκ (24)

⊗ ai+1,s � ail ⊗ ai+1,l � ai+1,s

=air � ail � (ai+1,r � ai+1,l) (25)

≥e. (26)

Where we obtain Eq. 24 by substituting Eqs. 18 and 19 into Eq. 20, Eq. 25 by canceling and
rearranging terms, and Eq. 26 by Eq. 8.

Equation 9: Let i, j such that j ≤ i + 1, i, j ≤ n. Then

cij =
n⊕

κ=1

aiκ ⊗ bκj

≥ aii ⊗ bij

> −∞.

To simplify the notation in the following results, we will use this definition.

Definition 9 For some A ∈ M n, we define

Zi(A) = ain � ai−1,n

zi(A) = ai1 � ai−1,1.

The following Lemma, taken from Weyerman and Warnick (2007) gives us a range on
the “spread” that can occur between the elements of the state vector after applying any input.

Lemma 3 (Weyerman and Warnick 2007) For some A ∈ M n, for any x ∈ R
n
max, if we let

y = A ⊗ x, then
zi(A) ≤ yi � yi−1 ≤ Zi(A).

These results equips us to make some statements related to the input-output properties of
these max-plus operators.

Proposition 2 Suppose A,B ∈ M n and x(�) = [ ε . . . ε e
]T

. Then

x(�) = arg min
x�=ε

(‖A ⊗ x‖1max � ‖x‖1max

)

and
x(�) = arg min

x�=ε

(‖A ⊗ B ⊗ x‖1max � ‖B ⊗ x‖1max

)
. (27)

Note that x(�) is the best possible state for the system to complete its subsequent jobs as
quickly as possible.

Proof Let A ∈ M n be given. By Lemma 2 and Definition 8, we know that

min
x�=ε

(‖A ⊗ x‖1max � ‖x‖1max

) = min
i

[
eT ⊗ A

]

i

= ann.
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Consider x = [ ε . . . ε e
]T

, then ‖x‖1max = e, and

‖A ⊗ x‖1max = ∥∥[ an1 . . . ann

]∥∥
1max

= ann.

To show Eq. 27, we will also suppose that B ∈ M n. Let ỹ = B ⊗ x̃ with x̃ =[
ε · · · e � bnn

]T
and suppose that there is some ȳ = B ⊗ x̄ with ‖ȳ‖1max = e such that

‖A ⊗ ȳ‖1max < ‖A ⊗ ỹ‖1max .
We will pick j, κ such that ‖A ⊗ ỹ‖1max = anj ⊗ ỹj and ‖A ⊗ ȳ‖1max = anκ ⊗ ȳκ . Then

we have the following inequalities

anj ⊗ ỹj > anκ ⊗ ȳκ

anκ ⊗ ȳκ ≥ anj ⊗ ȳj .

These can be combined to get

ȳj < ỹj .

But, by Lemma 3,

ȳn ≤ ȳj ⊗
n⊗

i=j+1

Zi(B)

< ỹj ⊗
n⊗

i=j+1

Zi(B)

= e.

Which contradicts the statement that ‖ȳ‖1max = e, so ỹ and hence x̃ achieves the minimum.
It is easy to see that x = x̃ ⊗ bnn also achieves the minimum.

5.2 Fixed input stability

Now, we will show that the system (10), which represents a batch flow shop, is stable under
the same input or the same sequence of inputs. To show this result we will need several
preliminary lemmas.

Let δi be the difference between the rows of the first column as follows:

δi(A) = ai+1,1 − ai1

We can write any matrix, A ∈ M n, in terms of a11, the row difference ξij and the column
difference δi’s as

aij = a11 −
j−1∑

l=1

ξil +
i−1∑

κ=1

δκ . (28)

We note that a matrix, A ∈ R
n×n
max can be used to represent a directed graph with a set of n

nodes or vertices, N (A) = {1, . . . , n}, and a set of edges or arcs, D(A), which are ordered
pairs of vertices. We define aij as the edge weight from node j to node i. If aij is greater
than −∞, then (vj , vi) ∈ D(A), meaning there is an edge from node j to node i, otherwise
(vj , vi) /∈ D(A). For a matrix A ∈ R

n×n
max , we will denote G (A) =: {N (A),D(A)} to mean

the graph representation of the matrix A.
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Given two distinct vertices, vi, vj ∈ N (A), we will define the function h(vi, vj ) :
N (A) × N (A) → Rmax as

h(vi, vj ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
vj −1∑

κ=vi

ξvj ,κ vi < vj

vi−1∑

κ=vj

ξvj ,κ vi > vj

.

For a circuit in a graph, V = {v1, . . . , vl}, with |V | =: l, we will use the convention that
vl+1 = v1. The average circuit weight of a circuit V , w(V ), is defined as

w(V ) =:

∑

vi∈V

avi+1,vi

|V |
Lemma 4 Given a circuit, V = {v1, v2, . . . , vl} in G (A) with A ∈ M n,∑

vi∈V h(vi, vi+1) ≤ 0.

Proof We will let b correspond to a vertex in N (A) and construct a sum of over the vertices
in V with respect to b. We will then show that the sum with respect to each b, 0 < b < n is
less than or equal to zero, and that the sum over all 0 < b < n is the sum in question.

Let 0 < b < n be given. To construct our sum with respect to b, we will first consider the
arcs that “pass” b in the positive direction. That is, if there is some i such that vi ≤ b < vi+1
we will add ξvi+1,b. Let Ib be the set of all such i’s. Now, consider the arcs that “pass” b

in the negative direction. That is, if there is some j such that vj+1 ≤ b < vj we will add
−ξvj+1,b. Let Jb be the set of all such j ’s.

Note that since V is a circuit we will have vi ≤ b < vi+1 for some i if and only if there
is some j �= i such that vj+1 ≤ b < vj . This is true because V is a circuit, each time we
“pass” node b, we must “pass” it going the other way to eventually return to the start node.
Hence, Ib and Jb have the same number of elements.

Taking the sum over Ib and Jb, we get
∑

i∈Ib
ξvi+1,b −∑j∈Jb

ξvj+1,b. By definition, for
every j ∈ Jb, vj+1 ≤ b and for every i ∈ Ib, b < vi+1; thus, for every i ∈ Ib, j ∈ Jb,
vj+1 < vi+1. From this and by Definition 8, ξvj+1,b ≥ ξvi+1,b for every i ∈ Ib and j ∈ Jb.
Hence,

∑
i∈Ib

ξvi+1,b −∑j∈Jb
ξvj+1,b ≤ 0.

We will generalize the notions of Ib and Jb to I = {i|vi < vi+1; vi, vi+1 ∈ V } and
J = {j |vj+1 < vj ; vj , vj+1 ∈ V }. Then

∑

vi∈V

h(vi, vi+1) =
∑

i∈I

vi+1−1∑

κ=vi

ξvi+1,κ −
∑

j∈J

vj −1∑

κ=vj+1

ξvj+1,κ

=
n−1∑

b=1

(
∑

i∈Ib

ξvi+1,b −
∑

j∈Jb

ξvj+1,b)

≤0.
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Lemma 5 Let arr be the maximum diagonal element in a matrix, A ∈ M n. Then

r−1∑

i=1

ξri −
r−1∑

i=1

δi −
j−1∑

i=1

ξji +
j−1∑

i=1

δi ≤ 0

for any j ≤ n with equality if and only if arr = ajj .

Proof Let j ≤ n be given. We can write

ajj = arr +
r−1∑

i=1

ξri −
r−1∑

i=1

δi −
j−1∑

i=1

ξji +
j−1∑

i=1

δi .

Because ajj is on the diagonal, ajj ≤ arr , so

r−1∑

i=1

ξri −
r−1∑

i=1

δi −
j−1∑

i=1

ξji +
j−1∑

i=1

δi = ajj − arr

≤ 0

and equality is achieved if and only if ajj = arr .

Lemma 6 Let V be a circuit in G (A) with A ∈ M n, where arr is the maximum diagonal
element of A. Then the average circuit weight w(V ) ≤ arr with equality if and only if
ajj = arr∀j ∈ V .

Proof Let l = |V |. We will consider lw(V ). Then

lw(V ) =av2v1 + av3v2 + . . . + avlv1 (29)

=a11 −
v1−1∑

i=1

ξv2i +
v1−1∑

i=1

δi (30)

+ a11 −
v2−1∑

i=1

ξv3i +
v2−1∑

i=1

δi + . . .

+ a11 −
vl−1∑

i=1

ξv1i +
vl−1∑

i=1

δi

=larr (31)

+
⎛

⎝
r−1∑

i=1

ξri −
r−1∑

i=1

δi −
vl−1∑

i=1

ξv1i +
v1−1∑

i=1

δi

⎞

⎠

+
⎛

⎝
r−1∑

i=1

ξri −
r−1∑

i=1

δi −
v1−1∑

i=1

ξv2i +
v2−1∑

i=1

δi

⎞

⎠

+ . . .

+
⎛

⎝
r−1∑

i=1

ξri −
r−1∑

i=1

δi −
vl−1−1∑

i=1

ξvl i +
vl−1∑

i=1

δi

⎞

⎠
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Where Eq. 29 follows by definition of w(V ), Eq. 30 follows by substitution as in Eq. 28,
and Eq. 31 follows by substitution of a11 = arr +∑r−1

i=1 ξri −∑r−1
i=1 δi from Eq. 28.

We can decompose
∑vj −1

i=1 ξvj+1i as
∑vj+1−1

i=1 ξvj+1i + h(vj , vj+1). Thus by Lemma 5,
each

r−1∑

i=1

ξri −
r−1∑

i=1

δi −
vj −1∑

i=1

ξvj+1i +
vj+1−1∑

i=1

δi

=
r−1∑

i=1

ξri −
r−1∑

i=1

δi −
vj+1−1∑

i=1

ξvj+1i +
vj+1−1∑

i=1

δi

+ h(vj , vj+1)

≤ h(vj , vj+1).

With equality when ajj = arr .
Thus

lw(V ) ≤ larr +
∑

vj ∈V

h(vj , vj+1) (32)

≤ larr (33)

w(V ) ≤ arr .

Here (32) follows from Lemma 4. We get equality in Eqs. 32, 33 if and only if ajj =
arr ∀j ∈ V .

Lemma 7 Let A ∈ M n. Then every vertex in the critical graph of A has a self loop.

Proof Let v be a vertex in the critical graph of A. This means that v is in a critical circuit
of A which we will call V . By Lemma 6, it must be that w(V ) = arr because vertex r has
a self loop with average weight arr which must be in the critical graph. Furthermore, since
v ∈ V , avv = arr , so the self loop on v must also be in the critical circuit of A.

Theorem 3 Let A ∈ M n. Then A has cyclicity one.

Proof By Lemma 7, every vertex in the critical graph of A has a self loop. In Heidergott
et al. (2006) the cyclicity of a matrix is defined to be the cyclicity of the critical graph of
that matrix. We will call G the critical graph of A.

Suppose that G is strongly connected. The cyclicity of A is the greatest common divisor
of the lengths of all elementary circuits in G. Because every node in G has a self loop, the
elementary circuits of those self-loops have length one, thus the cyclicity of G must be one.

Suppose that G is not strongly connected. Then the cyclicity of G (and thus A) is the least
common multiple of the cyclicities of all maximal strongly connected subgraphs (m.s.c.s.’s)
of G. Again, since each node in each m.s.c.s. of G has a self-loop, the cyclicity of each
m.s.c.s. is one and thus the cyclicity of G is one.

Lemma 8 Let A ∈ M n. Then A is irreducible.

Proof Let A ∈ M n be given. Recall that a matrix is irreducible if G (A) is strongly con-
nected. We will enumerate the vertices of G (A) as {v1, . . . , vn}. It is easy to see that for
j ≤ i, vi is reachable from vj since aij > −∞ by Eq. 9. Suppose j > i, then we
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see by Eq. 9 that vj−1 is reachable from vj , and we can reach vi by traversing the edges
(vj , vj−1), (vj−1, vj−2), . . . , (vi+1, vi). Therefore, G (A) is strongly connected and A is
irreducible.

From Cohen et al. (1985), Ahmadi et al. (1992) we get the following theorem which we
will need in our proof of stability.

Theorem 4 (Cohen et al. 1985, Ahmadi et al. 1992) Let A ∈ R
n×n
max be an irreducible matrix

with eigenvalue λ and cyclicity σ = σ(A). Then there is an N such that

A⊗(κ+σ) = λ⊗σ ⊗ A⊗κ

for all κ ≥ N .

Now we are ready to prove the main theorem of this section.

Theorem 5 Let A ∈ M n. Then the linear autonomous system

x(k + 1) = A ⊗ x(k)

is stable in the sense of Definition 3.

Proof Let A ∈ M n with eigenvalue λ. By Lemma 8 and Theorems 3 and 4, we know that
there is some N such that

A⊗(l+1) = λ ⊗ A⊗l

for all l ≥ N . Let x ∈ R
n
max, l ≥ N be given. Let i ≤ n be given. Consider A⊗(l+1)x =

λ ⊗ A⊗l ⊗ x. From this we see that after l steps, A⊗l ⊗ x is an eigenvector of A, therefore
we see that for all k ≥ 1, [A⊗(k+l) ⊗ x]i � [A⊗(k+l) ⊗ x]1 is a constant value.

Corollary 1 Let A(i) ∈ M n, i = 1, 2, ..., t . Then the linear autonomous system

x(k + 1) = A(1) ⊗ ... ⊗ A(t) ⊗ x(k)

is stable in the sense of Definition 3.

Proof The proof follows directly from the fact that M n is closed under max-plus multi-
plication and Theorem 5.

6 Suboptimal scheduling with bounds

6.1 Model approximation

Since any system in M n is stable, clearly any system in our set A ⊂ M n is stable. So, if
the input, p, is constant, the effect of the initial condition dies away as the system stabilizes.
This motivates us to pose an approximation to the system that assumes only the most recent
inputs effect the current state. If we consider that only the last t inputs have an effect and
hence only those inputs are used in the computation of y(k), the approximation is called a t-
step approximation. Note that the choice of a good approximation size for a particular kind
of system is a subject of ongoing research, although the general idea would be to choose t as
large as possible, such that the computational effort required to optimally solve the resulting
(smaller) sequencing problem is within the bounds of available computational resources.
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To simplify notation, we will denote the sequence of inputs from time i to time j as
P(i, j) = (p(i), p(i +1), . . . , p(j −1), p(j)) with i ≤ j . Using this notation, we will also
denote

A(P (i, j)) = A(p(j)) ⊗ · · · ⊗ A(p(i))

and note that, by Theorem 2, A(P (i, j)) ∈ M . For a sequence P(0, k) = (p(0), . . . , p(k)),
we will write

x(k + 1) = A(P (0, k)) ⊗ x(0)

y(P (0, k)) = x(k + 1) � x(0)

=
k∑

i=0

y(i).

If the system is driven by a sequence P(0, k − 1) = (p(0), . . . , p(k − 1)), then we have as
a solution to Eq. 10

x(k) = A(P (0, k − 1)) ⊗ x(0).

We want to build our approximation such that we lower bound the actual output, so we
approximate the current state using the t-step approximation for the subsequence P(k −
t, k − 1).

Definition 10 Given a system as in Eq. 10 and a sequence of inputs, P(0, k) =
(p(0), . . . , p(k)), we define the t-step approximation of (x, y) to be

x̂t(k) =
{

A(P (k − t, k − 1)) ⊗ x(�), if k > t,

A(P (0, k − 1)) ⊗ x(0), otherwise

ŷt (k) =‖A(p(k)) ⊗ x̂t(k)‖1max � ‖x̂t(k)‖1max

with x(�) = [ ε . . . ε e
]T

.

Here, ŷp(k) approximates the cost of completing the job p(k) after completing the
sequence of jobs P(k − t, k − 1).

This approximation leads to an approximation of the problem in Eq. 11:

min
P admissible

Q−1∑

k=0

ŷt (k)

subject to x̂t(k) =
{

A(P (k − t, k − 1)) ⊗ x(�), if k > t,

A(P (0, k − 1)) ⊗ x(0), otherwise
ŷt (k) = ‖A(p(k)) ⊗ x̂t(k)‖1max � ‖x̂t(k)‖1max .

(34)

This problem is easier to solve than Eq. 11 because we reduce the amount of com-
putation it takes to obtain the transition cost, y(k). Finding the best schedule using any
algorithm requires the calculation of the transition cost. When the approximation is not
used, calculation of a y(k) requires the knowledge of the state x(k), which depends on
the inputs P(0, k − 1). But using the approximate, the current state x̂t(k) only depends
on P(k − t, k − 1). For example, let us suppose we have a factory that operates on
three different job types p1, p2, and p3. Also suppose that the factory gets a sequence
of jobs, say p1, p2, p3, p1, p3. The actual cost of producing the last p3 is given by
‖A(p3) ⊗ x(4)‖1max � ‖x(4)‖1max , where x(4) = Ap1 ⊗ A(p3) ⊗ A(p2) ⊗ A(p1) ⊗ x0.
If a 2-step approximation is used the cost is given by ‖A(p3) ⊗ x̂2(4)‖1max � ‖x̂2(4)‖1max ,
where x̂2(4) = A(p1) ⊗ A(p3) ⊗ x(�).
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While using a t-step approximation, additional speedup can be gained by calculating and
storing all the possible values of ŷt (k) before solving the optimization problem and reusing
them during the solution. This is especially helpful if the size of the quota is much larger
than the number of distinct job types, which is common in practical situations.

6.2 Scheduling method

To solve the scheduling problem for the t-step approximation, we will formulate an integer
program similar to that of the traveling salesperson problem. Let P(t) be the set of all t

long sequences of job types, P(t) = {(p(1), . . . , p(t))|p(i) ∈ (J ∪ 0)}, where 0 is a new
job type corresponding to allowing the flow shop to complete processing of all the current
jobs and

A(0) =
⎡

⎢⎣
e . . . e
...

. . .
...

e . . . e

⎤

⎥⎦ .

Consider a graph with a vertex corresponding to each sequence in Pt and directed edges
from vertex representing the sequences (p(i), ..., p(i + t −1)) to (p(i +1), ..., p(i + t −1),

p(i + t)). The edge weight is given by the approximate cost of completing the job p(i + t)

after completing the sequence of jobs (p(i), ..., p(i + t −1)). Hence each node corresponds
to the completion of a job and the weights are the different values of ŷt (k). Now, the problem
of finding the sequence of jobs that minimizes the makespan while fulfilling the quota is the
same as finding the shortest tour in the graph that visits the nodes, possibly multiple times,
to fulfill the quota.

This graph can be represented by a weight matrix C ∈ R
(m+1)t×(m+1) whose rows are

indexed by different sequences in Pt and columns are indexed by the job types. Let decision
variable W ∈ N

(m+1)t×(m+1) indicate the number of times we traverse each edge. Because
we are minimizing makespan, we have as the objective function:

min
W

⎛

⎝
m+1∑

j=1

(m+1)t∑

i=1

cijwij

⎞

⎠

We construct the first constraint to enforce traversal of the graph as tours, i.e. for every
node the number of times the incoming edges are traversed is equal to the number of times
the outgoing nodes are traversed:

m+1∑

i=1

wpj −
∑

K

wKl = 0;

p = (p(1), ..., p(t)) ∈ P(t), l = p(t),

K = {(x, p(1), p(2), ..., pt−1)|x ∈ (J ∪ 0)}

The second constraint requires that the quota is met. We will set the quota of job 0 to be 1.

(m+1)t∑

i=1

wij = qj ; j = 1, . . . , m + 1. (35)



522 Discrete Event Dyn Syst (2015) 25:497–529

Combining these, we get the integer programming formulation

min
W

⎛

⎝
m+1∑

j=1

(m+1)t∑

i=1

cijwij

⎞

⎠

subject to:
m+1∑

i=1

wpj −
∑

K

wKl = 0;

p = (p(1), ..., p(t)) ∈ P(t), l = p(t),

K = {(x, p(1), p(2), ..., pt−1)|x ∈ (J ∪ 0)}
(m+1)t∑

i=1

wij = qj ; j = 1, . . . , m + 1

wij ∈ {0, 1, . . .}
The solution of this problem may lead to multiple sub-tours. We require a single tour.

In order to achieve a single tour, we employ a strategy presented in Vanderbei (2001). The
problem is iteratively solved adding a constraint each iteration to break the smallest sub-tour,
ς , of length ςlength:

∑

i,j∈ς

wij < ςlength (36)

Once there is a single tour, the matrix W will represent a directed graph and will specify
the number of times each arc is to be traversed. The tour specified by W is the schedule.

6.3 Error bounds

To compute the bounds on the error generated by the solution of the approximated problem,
we will first show that our approximation method lower bounds the actual output. We use
x(�) = [ ε . . . ε e

]T
in order to arrive at the following proposition.

Proposition 3 Given a system as in Eq. 10 and a sequence P(0, k), the output of the t-step
approximation ŷt (k) gives a lower bound of the actual output y(k), i.e. it satisfies

ŷt (k) ≤ y(k)

for all k > t , and
ŷt (k) = y(k)

for all k ≤ t .

Proof Let a system as in Eq. 10 and a sequence P(0, k) be given. By Proposition 2 and
Theorem 2

ŷt (k) =‖A(p(k)) ⊗ x̂t(k)‖1max � ‖x̂t(k)‖1max

=‖A(p(k)) ⊗ A(P (k − t, k − 1)) ⊗ x(�)‖1max

� ‖A(P (k − t, k − 1)) ⊗ x(�)‖1max

= min
x

‖A(p(k)) ⊗ A(P (k − t, k − 1)) ⊗ x‖1max

� ‖A(P (k − t, k − 1)) ⊗ x‖1max

≤y(k)
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if k > t , and
ŷt (k) = y(k)

when k ≤ t by definition of t-step approximation.

Hence, our approximation gives a lower bound on y given the last t inputs. This differs
from the approximation given in Weyerman and Warnick (2007) as that approximation gave
an upper bound on y.

Let P ∗ be the solution to the problem in Eq. 11 and P̂ t∗ the solution to the approximated
problem, Eq. 34. We will now construct a bound for the difference between the true cost of
using the solution P ∗, y(P ∗), and the true cost of using the solution to the approximated
problem, y(P̂ t∗).

Lemma 9 Suppose we have the set A ⊂ M n with a corresponding set of jobs
{1, 2, . . . , m} and a quota, q ∈ N

m. Then we have the following bound on the error

y(P̂ t∗) − y(P ∗) ≤ y(P̂ t∗) − ŷt (P̂ t∗), (37)

where y(.) is the true cost of using the solution, and ŷt (.) is the approximate cost of using
the solution.

Proof Since P̂ t∗ is the optimal solution for the approximated problem,

ŷt (P̂ t∗) ≤ ŷt (P ∗).

Similarly, since P ∗ is the optimal solution for the original problem,

y(P ∗) ≤ y(P̂ t∗).

Because our approximation is a lower bound on y,

ŷt (P ∗) ≤ y(P ∗).

Combining these inequalities, we get:

ŷt (P̂ t∗) ≤ ŷt (P ∗) ≤ y(P ∗) ≤ y(P̂ t∗).

This ensures that the left hand side of Eq. 37 is non-negative and leads easily to

y(P̂ t∗) − y(P ∗) ≤ y(P̂ t∗) − ŷt (P̂ t∗).

This means that when we have a solution, we know the optimal solution is in between
the cost as calculated using the approximation and the actual cost of the best sequence of
the approximated problem.

We will define the maximum error of the t-step approximation much like as in Weyerman
and Warnick (2007). Given a set A and a sequence P(k − t, k), we say that

γ t (P (k − t, k)) = max
x

⎧
⎪⎪⎨

⎪⎪⎩

‖A(P (k − t, k)) ⊗ x‖1max

‖A(P (k − t, k − 1)) ⊗ x‖1max

‖A(P (k − t, k)) ⊗ x(�)‖1max

‖A(P (k − t, k − 1)) ⊗ x(�)‖1max

⎫
⎪⎪⎬

⎪⎪⎭
.

From this we define
t = max

P
γ t (P ).
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Note that t is another combinatorial optimization problem. This problem is at most
as complex as the t-step approximation problem. So we assume that if there is enough
computational power to solve the t-step approximation, then it is possible to calculate t .

Lemma 10 Given a system as in Eq. 10 and a sequence P(0, k), for k > t , y(k) � ŷt (k) ≤
t . If k ≤ t , then y(k) � ŷt (k) = e.

Proof Let a system as in Eq. 10 and a sequence P(0, k) be given. Consider the t-step
approximation for k > t . Then

y(k) � ŷt (k) =
‖A(P (k − t, k)) ⊗ x(k − t)‖1max

‖A(P (k − t, k − 1)) ⊗ x(k − t)‖1max

‖A(P (k − t, k)) ⊗ x(�)‖1max

‖A(P (k − t, k − 1)) ⊗ x(�)‖1max

≤γ t (P (k − t, k))

≤t .

Now consider the t-step approximation for k ≤ t . Then by Proposition 3

y(k) = ŷt (k)

for all k.

These Lemmata lead to the main result of the paper. We will now show that we can
calculate a bound on the error of the approximated best solution when compared to the true
best solution and that this bound improves as t increases until it reaches 0 at t = Q.

Theorem 6 If P̂ t∗ is the optimal solution to problem (34), then the bound on the error

y(P̂ t∗) � ŷt (P̂ t∗) ≤
Q⊗

i=t+1

t

where
t+1 ≤ t .

Furthermore,
y(P̂ ∗

Q) � ŷQ(P̂ ∗
Q) = 0.

Proof Suppose P̂ t∗ is the optimal solution to problem (34). Then by Lemma 10, y(k) �
ŷ(k) ≤ t for k > t , so

y(P̂ t∗) � ŷ(P̂ t∗) =
Q⊗

k=0

(y(k) � ŷ(k))

≤
Q⊗

k=t+1

t .

Let t be given. We will let P̃0,t+1 be such that γ t+1(P̃0,t+1) = t+1. It was shown in
Weyerman and Warnick (2007) that for any sequence, P , γ t+1(P0,t+1) ≤ γ t (P0,t ), so

γ p+1(P̃0,t+1) ≤γt (P̃0,t )

≤t .
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The final statement of the theorem follows since for k ≤ t , the approximation is exact.
So if t = Q, then the approximation is exact up to k = Q.

7 Conclusion

We have presented a model approximation method for batch flowshop scheduling to min-
imize makespan. This problem is shown to be N P-complete, which motivates the need
for an approximation of the system. We have shown that this system can be modeled as a
discrete event system in the max-plus algebra. Furthermore, these systems represent a sub-
set of a class of stable systems in the max-plus algebra. Due to this stability, we present a
method of model approximation that reduces the horizon of the optimization problem. This
model approximation method, which gives a lower bound to the actual output of the sys-
tem, scales to the amount of computational power available and offers a bound on the error
between the obtained solution and the optimal solution. This bound improves as the model
approximation is refined and the bound eventually reaches zero.
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Appendix: Proof of Theorem 1

Lemma 11 Given B ∈ R
n×n
max that satisfies Eq. 7 and (c, τ )(α), the matrix resulting from

finitely many left multiplications of Pi(k) and Ri(k) for any i with B satisfies Eq. 7.

Proof Let B ∈ R
n×n
max that satisfies Eq. 7, (c, τ )(α), and i ≤ n be given. After a left

multiply of Pi(k), Eq. 7 is trivially satisfied. Suppose that i < n. Consider the product
A = Ri(k) ⊗ B. Because the only difference between A and B is in rows i and i + 1, we
want to show that aij ≥ ai,j+1 and ai+1,j ≥ ai+1,j+1 for all j < n. We will consider two
cases.

Suppose bij ≥ bi+1,j . Then aij = bij = ai+1,j . Because B satisfies (7) it follows that
bij ≥ bi,j+1 and bij ≥ bi+1,j ≥ bi+1,j+1. So aij ≥ ai,j+1 and ai+1,j ≥ ai+1,j+1.

Suppose bi+1,j ≥ bij . We achieve the same result as the previous case in the same
manner.

Thus, because B satisfies Eq. 7 after a left multiply of an arbitrary Pi or Ri , after a finite
number of left multiplies, the resulting matrix will satisfy Eq. 7.

Lemma 12 Given B ∈ R
n×n
max that satisfies Eq. 8 and (c, τ )(α), the matrix resulting from

finitely many left multiplications of Pi(k) and Ri(k) for any i with B satisfies Eq. 8.

Proof Let B ∈ R
n×n
max that satisfies Eq. 8, (c, τ )(α), and i ≤ n be given. Left multiplying B

by Pi adds the same number to every element of row i. As this does not change ξij for any
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j , the resulting matrix still satisfies Eq. 8. Now suppose that we left multiply B by Ri for
some i < n. The resulting matrix, A, has rows i and i + 1 equal. We now have

ξij (A) = aij − ai,j+1

= max(bij , bi+1,j ) − max(bi,j+1, bi+1,j+1)

= ai+1,j − ai+1,j+1

= ξi+1,j (A).

We need now show that ξi−1,j (A) ≥ ξij (A) and that ξi+1,j (A) ≥ ξi+2,j (A). We will
handle each of four cases separately.

– Suppose bij ≥ bi+1,j and bi,j+1 ≥ bi+1,j+1. Then

aij − ai,j+1 = bij − bi,j+1

and
ai+1,j − ai+1,j+1 = bij − bi,j+1

≥ bi+1,j − bi+1,j+1.

– Suppose bij ≥ bi+1,j and bi,j+1 ≤ bi+1,j+1. Then

aij − ai,j+1 = bij − bi+1,j+1
≤ bij − bi,j+1

and
ai+1,j − ai+1,j+1 = bij − bi+1,j+1

≥ bi+1,j − bi+1,j+1.

– Suppose bij ≤ bi+1,j and bi,j+1 ≥ bi+1,j+1. But then

bij − bi,j+1 ≤ bi+1,j − bi+1,j+1

which violates the assumption on B, so this case is not possible.
– Finally, suppose bij ≤ bi+1,j and bi,j+1 ≤ bi+1,j+1. Then

aij − ai,j+1 = bi+1,j − bi+1,j+1
≤ bi,j − bi+1,j

and

ai+1,j − ai+1,j+1 = bi+1,j − bi+1,j+1.

We have shown that in any case, ξij (A) ≤ ξij (B) and ξi+1,j (A) ≥ ξi+1,j (B). For any
l �= i and l �= i + 1, ξlj (A) = ξlj (B) for all j . Thus, ξi−1,j (A) ≥ ξij (A) = ξi+1,j (A) ≥
ξi+2,j (A), so Eq. 8 is satisfied after a left multiply of Ri .

Because we have shown that the resulting matrix after a left multiply of arbitrary Pi or
arbitrary Ri satisfies Eq. 8, it follows that Eq. 8 is satisfied after a finite number of left
multiplies.

We are now ready to prove the main theorem.

Proof of Theorem 1 Let (c, τ )(α) be given. The algorithm for constructing A(α) begins
with Imax . The block of Imax consisting of i11 is trivially in M n. Thus we know by the
Lemmata 11 and 12 that this block satisfies Eq. 7 and Eq. 8 throughout the algorithm. We
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will show by induction that by the end of the algorithm the entire matrix satisfies both of
these. Suppose that at the pth stage of the algorithm, the block from b11 to bkk of the current
matrix B satisfies Eq. 7 and Eq. 8 and the remainder of the matrix consists of ε off the
diagonal and e on the diagonal. Consider now C = Rk ⊗ B, we can suppose without loss
of generality that this is the next operation the algorithm performs. Row k + 1 of C is equal
to row k of C, with the only difference between row k of C and row k of B being that
ck,k+1 = e and bk,k+1 = ε. Therefore ξik(C) = ∞ for i < k and ξkk(C) < ∞, so the
block from c11 to ck+1,k+1 satisfies (8). Also, because we must multiply by Pk before Rk ,
ckk > ck,k+1 = 0, so the block from c11 to ck+1,k+1 satisfies Eq. 7. The remaining rows and
columns of C consist of ε off the diagonal and e on the diagonal. Therefore, by induction,
A must satisfy Eq. 7 and Eq. 8.

It remains to be shown that A satisfies Eq. 6 and Eq. 9. By the algorithm, we can write,

A = Rn−1 ⊗ Bn−1 ⊗ Rn−2 ⊗ Bn−2 ⊗ . . . ⊗ R1 ⊗ P1 ⊗ Imax

where Bn−j is some intermediate matrix sum. This sequence of Ri’s shows that the 0 entries
on the diagonal or Imax will be cascaded down through the columns of the matrix, it will
also ensure that the entries just above the diagonal are greater than −∞, and we see that A

satisfies Eq. 9.
For Eq. 6, consider the last multiplication of Pi for some i. This is necessarily followed

by a multiplication of Ri , at this point the resulting matrix, C, has cij = ci+1,j . This matrix
is necessarily multiplied by Pi+1 before another Ri or Pi ; the resulting matrix, which we
will call D, has dij ≤ di+1,j , at this point we know aij = dij and ai+1,j ≥ di+1,j , so A

must satisfy Eq. 6.
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