230 research outputs found

    Survivable multicasting in WDM optical networks

    Get PDF
    Opportunities abound in the global content delivery service market and it is here that multicasting is proving to be a powerful feature. In WDM networks, optical splitting is widely used to achieve multicasting. It removes the complications of optical-electronic-optical conversions [1]. Several multicasting algorithms have been proposed in the literature for building light trees. As the amount of fiber deployment increases in networks, the risk of losing large volumes of data traffic due to a fiber span cut or due to node failure also increases. In this thesis we propose heuristic schemes to make the primary multicast trees resilient to network impairments. We consider single link failures only, as they are the most common cause of service disruptions. Thus our heuristics make the primary multicast session survivable against single link failures by offering alternate multicast trees. We propose three algorithms for recovering from the failures with proactive methodologies and two algorithms for recovering from failures by reactive methodologies. We introduce the new and novel concept of critical subtree. Through our new approach the proactive and reactive approaches can be amalgamated together using a criticality threshold to provide recovery to the primary multicast tree. By varying the criticality threshold we can control the amount of protection and reaction that will be used for recovery. The performance of these five algorithms is studied in combinations and in standalone modes. The input multicast trees to all of these recovery heuristics come from a previous work on designing power efficient multicast algorithms for WDM optical networks [1]. Measurement of the power levels at receiving nodes is indeed indicative of the power efficiency of these recovery algorithms. Other parameters that are considered for the evaluation of the algorithms are network usage efficiency, (number of links used by the backup paths) and the computation time for calculating these backup paths. This work is the first to propose metrics for evaluating recovery algorithms for multicasting in WDM optical networks. It is also the first to introduce the concept of hybrid proactive and reactive approach and to propose a simple technique for achieving the proper mix

    Survivability and performance optimization in communication networks using network coding

    Get PDF
    The benefits of network coding are investigated in two types of communication networks: optical backbone networks and wireless networks. In backbone networks, network coding is used to improve survivability of the network against failures. In particular, network coding-based protection schemes are presented for unicast and multicast traffic models. In the unicast case, network coding was previously shown to offer near-instantaneous failure recovery at the bandwidth cost of shared backup path protection. Here, cost-effective polynomial-time heuristic algorithms are proposed for online provisioning and protection of unicast traffic. In the multicast case, network coding is used to extend the traditional live backup (1+1) unicast protection to multicast protection; hence called multicast 1+1 protection. It provides instantaneous recovery for single failures in any bi-connected network with the minimum bandwidth cost. Optimal formulation and efficient heuristic algorithms are proposed and experimentally evaluated. In wireless networks, performance benefits of network coding in multicast transmission are studied. Joint scheduling and performance optimization formulations are presented for rate, energy, and delay under routing and network coding assumptions. The scheduling component of the problem is simplified by timesharing over randomly-selected sets of non-interfering wireless links. Selecting only a linear number of such sets is shown to be rate and energy effective. While routing performs very close to network coding in terms of rate, the solution convergence time is around 1000-fold compared to network coding. It is shown that energy benefit of network coding increases as the multicast rate demand is increased. Investigation of energy-rate and delay-rate relationships shows both parameters increase non-linearly as the multicast rate is increased

    Design of power efficient multicast algorithms for sparse split WDM networks

    Get PDF
    Recent years witnessed tremendous increase in data traffic as new Internet applications were launched. Optical networks employing recent technologies such as DWDM and EDFA`s emerged as the most prominent and most promising solutions in terms of their ability to keep with the demand on bandwidth. However for a class of applications bandwidth is not the only important requirement, These applications require efficient multicast operations. They include data bases, audio/video conferencing, distributed computing etc. Multicasting in the optical domain however has its own unique set of problems. First, an optical signal can be split among the outputs of a node but the power due to splitting can be significantly reduced. Second, the hardware for split nodes is relatively expensive and therefore we cannot afford to employ it at every node. Third, there are other sources of losses such as attenuation losses and multiplexing /de-multiplexing losses. This thesis deals with the important issue of Power Efficient multicast in WDM optical networks. We report three new algorithms for constructing power efficient multicast trees and forests. Our algorithms are the first to take into account all possible sources of power losses while constructing the trees. We utilize the techniques of backtracking and tree pruning judiciously to achieve very power efficient multicast trees. The first two algorithms use modified versions of the shortest path heuristic to build the tree. The third algorithm however, uses a novel concept and considers power at every tree building step. In this algorithm, the order of inclusion of destination nodes into the tree is based on the power distribution in the tree and not distance. All three algorithms prune the trees if the power levels at the destinations are not acceptable. The performance of these three algorithms under several constraints is studied on several irregular topologies. All three algorithms reported in this work produce significant improvements in signal strength at the set of destinations over the existing multicast algorithms. Numerical results show that our third algorithm outperforms the first two algorithms as well as the existing multicasting algorithms

    Design and analysis of a 3-dimensional cluster multicomputer architecture using optical interconnection for petaFLOP computing

    Get PDF
    In this dissertation, the design and analyses of an extremely scalable distributed multicomputer architecture, using optical interconnects, that has the potential to deliver in the order of petaFLOP performance is presented in detail. The design takes advantage of optical technologies, harnessing the features inherent in optics, to produce a 3D stack that implements efficiently a large, fully connected system of nodes forming a true 3D architecture. To adopt optics in large-scale multiprocessor cluster systems, efficient routing and scheduling techniques are needed. To this end, novel self-routing strategies for all-optical packet switched networks and on-line scheduling methods that can result in collision free communication and achieve real time operation in high-speed multiprocessor systems are proposed. The system is designed to allow failed/faulty nodes to stay in place without appreciable performance degradation. The approach is to develop a dynamic communication environment that will be able to effectively adapt and evolve with a high density of missing units or nodes. A joint CPU/bandwidth controller that maximizes the resource allocation in this dynamic computing environment is introduced with an objective to optimize the distributed cluster architecture, preventing performance/system degradation in the presence of failed/faulty nodes. A thorough analysis, feasibility study and description of the characteristics of a 3-Dimensional multicomputer system capable of achieving 100 teraFLOP performance is discussed in detail. Included in this dissertation is throughput analysis of the routing schemes, using methods from discrete-time queuing systems and computer simulation results for the different proposed algorithms. A prototype of the 3D architecture proposed is built and a test bed developed to obtain experimental results to further prove the feasibility of the design, validate initial assumptions, algorithms, simulations and the optimized distributed resource allocation scheme. Finally, as a prelude to further research, an efficient data routing strategy for highly scalable distributed mobile multiprocessor networks is introduced

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Evolutionary approaches toward practical network coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 133-137).There have been numerous studies showing various benefits of network coding. However, in order to have network coding widely deployed in real networks, it is also important to show that the amount of overhead incurred by network coding can be kept minimal and eventually be outweighed by the benefits network coding provides. Owing to the mathematical operations required, network coding necessarily incurs some additional cost such as computational overhead or transmission delay, and as a practical matter, the cost of special hardware and/or software for network coding. While most network coding solutions assume that the coding operations are performed at all nodes, it is often possible to achieve the network coding advantage for multicast by coding only at a subset of nodes. However, determining a minimal set of the nodes where coding is required is NP-hard, as is its close approximation; hence there are only a few existing approaches each with certain limitations. In this thesis, we develop an evolutionary approach toward a practical multicast protocol that achieves the full benefit of network coding in terms of throughput, while performing coding operations only when required at as few nodes as possible. We show that our approach operates in a very efficient and practical manner such that it is distributed over the network both spatially and temporally, yielding a sufficiently good solution, which is at least as good as those obtained by existing centralized approaches but often turns out to be much superior in practice. We broaden the application areas of our evolutionary approach by generalizing it in several ways. First, we show that a generalized version of our approach can effectively reveal the possible tradeoff between the costs of network coding and link usage, enabling more informed decisions on where to deploy network coding. Also, we demonstrate that our approach can be applied to investigate many important but, because of the lack of appropriate tools, largely unanswered questions arising in practical scenarios based on heterogeneous wireless ad hoc networks and fault-tolerant optical networks.(cont.) Finally, further generalizing our evolutionary approach, we propose a novel network coding scheme for the general connection problem beyond multicast, for which no optimal network coding strategy is known. Our coding scheme allows general random linear coding over a large finite field, in which decoding is done only at the receivers and the mixture of information at interior nodes is controlled by evolutionary mechanisms.by Minkyu Kim.Ph.D
    • …
    corecore