54 research outputs found

    A Survey of Scheduling in Time-Sensitive Networking (TSN)

    Full text link
    TSN is an enhancement of Ethernet which provides various mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the transmission of their packets by edge nodes is coordinated in such a way that none or very little queuing delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work, we consider scheduling in TSN which comprises the computation of periodic transmission instants at edge nodes and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of TSN features and standards. We state the TSN scheduling problem and explain common extensions which also include optimization problems. We review scheduling and optimization methods that have been used in this context. Then, the contribution of currently available research work is surveyed. We extract and compile optimization objectives, solved problem instances, and evaluation results. Research domains are identified, and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.Comment: 34 pages, 19 figures, 9 tables 110 reference

    Comparing Admission Control Architectures for Real-Time Ethernet

    Get PDF
    Industry 4.0 and Autonomous Driving are emerging resource-intensive distributed application domains that deal with open and evolving environments. These systems are subject to stringent resource, timing, and other non-functional constraints, as well as frequent reconfiguration. Thus, real-time behavior must not preclude operational flexibility. This combination is motivating ongoing efforts within the Time Sensitive Networking (TSN) standardization committee to define admission control mechanisms for Ethernet. Existing mechanisms in TSN, like those of AVB, its predecessor, follow a distributed architecture that favors scalability. Conversely, the new mechanisms envisaged for TSN (IEEE 802.1Qcc) follow a (partially) centralized architecture, favoring short reconfiguration latency. This paper shows the first quantitative comparison between distributed and centralized admission control architectures concerning reconfiguration latency. Here, we compare AVB against a dynamic real-time reconfigurable Ethernet technology with centralized management, namely HaRTES. Our experiments show a significantly lower latency using the centralized architecture. We also observe the dependence of the distributed architecture in the end nodes' performance and the benefit of having a protected channel for the admission control transactions.This work was supported in part by the Spanish Agencia Estatal de Investigación (AEI), in part by the Fondo Europeo de Desarrollo Regional (FEDER) [AEI/FEDER, Unión Europea (UE)] under Grant TEC2015-70313-R, in part by the European Regional Development Fund (FEDER) through the Operational Programme for Competitivity and the Internationalization of Portugal 2020 Partnership Agreement (PRODUTECH-SIF) under Grant POCI-01-0247-FEDER-024541, and in part by the Research Centre Instituto de Telecomunicações under Grant UID/EEA/50008/2013.info:eu-repo/semantics/publishedVersio

    Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)

    Get PDF
    In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows. We are interested to determine the routing of both TT and AVB flows as well as the scheduling of the TT flows such that all frames are schedulable and the AVB worst-case end-to-end delay is minimized. We have proposed an Integer Linear Programming (ILP) formulation for the scheduling problem and a Greedy Randomized Adaptive Search Procedure (GRASP)-based heuristic for the routing problem. The proposed approaches have been evaluated using several test cases

    Routing Optimization of AVB Streams in TSN Networks

    Get PDF
    In this paper we are interested in safety-critical real-time applications implemented on distributed architectures using the Time-Sensitive Networking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) streams with bounded end-to-end latency as well as Best-Effort messages. We consider that we know the topology of the network as well as the routes and schedules of the TT streams. We are interested to determine the routing of the AVB streams such that all frames are schedulable and their worst-case end-to-end delay is minimized. We have proposed a search-space reduction technique and a Greedy Randomized Adaptive Search Procedure (GRASP)-based heuristic for this routing optimization problem. The proposed approaches has been evaluated using several test cases. </jats:p

    An Independent Timing Analysis for Credit-Based Shaping in Ethernet TSN

    Get PDF

    An Independent Timing Analysis for Credit-Based Shaping in Ethernet TSN

    Get PDF
    • …
    corecore