3 research outputs found

    Schedulability Analysis for Global Fixed-Priority Scheduling of the 3-Phase Task Model

    Get PDF
    Presented at 23rd IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2017). Hsinchu, Taiwan.Scheduling real-time applications on general purpose multicore platforms is a challenging problem from a timing analysis perspective. Such platforms expose uncontrolled sources of interference whenever concurrent accesses to memory are performed. The non-deterministic bus and memory access behavior complicates the estimations of applications’ worst-case execution times (WCET). The 3-phase task model seems a good candidate to circumvent the uncontrolled sources of interference by isolating concurrent memory accesses. A task is divided in three successive phases; first, the task loads its instruction and data in a local memory, then it executes non-preemptively using those pre-loaded instructions and data, and finally, the modified data are pushed back to main memory. Following this execution model, tasks never access the bus during their execution phase. Instead, all the bus accesses are performed during the first and third phases. In this paper, we focus on the global fixed-priority scheduling of the 3-phase task model. A new schedulability test is derived by modelling the interference happening on the bus rather than the interference on the cores as in the state-ot-the-art techniques. The effectiveness of the test is evaluated by comparing it against the state-of-the-art.info:eu-repo/semantics/publishedVersio

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas TĂ©cnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de PrĂłxima GeneraciĂłn" under Grant IND2019/TIC-17261
    corecore