2,980 research outputs found

    Ocean feature recognition using genetic algorithms with fuzzy fitness functions (GA/F3)

    Get PDF
    A model for genetic algorithms with semantic nets is derived for which the relationships between concepts is depicted as a semantic net. An organism represents the manner in which objects in a scene are attached to concepts in the net. Predicates between object pairs are continuous valued truth functions in the form of an inverse exponential function (e sub beta lxl). 1:n relationships are combined via the fuzzy OR (Max (...)). Finally, predicates between pairs of concepts are resolved by taking the average of the combined predicate values of the objects attached to the concept at the tail of the arc representing the predicate in the semantic net. The method is illustrated by applying it to the identification of oceanic features in the North Atlantic

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore