1,824 research outputs found

    Hierarchical and Spatial Structures for Interpreting Images of Man-made Scenes Using Graphical Models

    Get PDF
    The task of semantic scene interpretation is to label the regions of an image and their relations into meaningful classes. Such task is a key ingredient to many computer vision applications, including object recognition, 3D reconstruction and robotic perception. It is challenging partially due to the ambiguities inherent to the image data. The images of man-made scenes, e. g. the building facade images, exhibit strong contextual dependencies in the form of the spatial and hierarchical structures. Modelling these structures is central for such interpretation task. Graphical models provide a consistent framework for the statistical modelling. Bayesian networks and random fields are two popular types of the graphical models, which are frequently used for capturing such contextual information. The motivation for our work comes from the belief that we can find a generic formulation for scene interpretation that having both the benefits from random fields and Bayesian networks. It should have clear semantic interpretability. Therefore our key contribution is the development of a generic statistical graphical model for scene interpretation, which seamlessly integrates different types of the image features, and the spatial structural information and the hierarchical structural information defined over the multi-scale image segmentation. It unifies the ideas of existing approaches, e. g. conditional random field (CRF) and Bayesian network (BN), which has a clear statistical interpretation as the maximum a posteriori (MAP) estimate of a multi-class labelling problem. Given the graphical model structure, we derive the probability distribution of the model based on the factorization property implied in the model structure. The statistical model leads to an energy function that can be optimized approximately by either loopy belief propagation or graph cut based move making algorithm. The particular type of the features, the spatial structure, and the hierarchical structure however is not prescribed. In the experiments, we concentrate on terrestrial man-made scenes as a specifically difficult problem. We demonstrate the application of the proposed graphical model on the task of multi-class classification of building facade image regions. The framework for scene interpretation allows for significantly better classification results than the standard classical local classification approach on man-made scenes by incorporating the spatial and hierarchical structures. We investigate the performance of the algorithms on a public dataset to show the relative importance of the information from the spatial structure and the hierarchical structure. As a baseline for the region classification, we use an efficient randomized decision forest classifier. Two specific models are derived from the proposed graphical model, namely the hierarchical CRF and the hierarchical mixed graphical model. We show that these two models produce better classification results than both the baseline region classifier and the flat CRF.Hierarchische und räumliche Strukturen zur Interpretation von Bildern anthropogener Szenen unter Nutzung graphischer Modelle Ziel der semantischen Bildinterpretation ist es, Bildregionen und ihre gegenseitigen Beziehungen zu kennzeichnen und in sinnvolle Klassen einzuteilen. Dies ist eine der Hauptaufgabe in vielen Bereichen des maschinellen Sehens, wie zum Beispiel der Objekterkennung, 3D Rekonstruktion oder der Wahrnehmung von Robotern. Insbesondere Bilder anthropogener Szenen, wie z.B. Fassadenaufnahmen, sind durch starke räumliche und hierarchische Strukturen gekennzeichnet. Diese Strukturen zu modellieren ist zentrale Teil der Interpretation, für deren statistische Modellierung graphische Modelle ein geeignetes konsistentes Werkzeug darstellen. Bayes Netze und Zufallsfelder sind zwei bekannte und häufig genutzte Beispiele für graphische Modelle zur Erfassung kontextabhängiger Informationen. Die Motivation dieser Arbeit liegt in der überzeugung, dass wir eine generische Formulierung der Bildinterpretation mit klarer semantischer Bedeutung finden können, die die Vorteile von Bayes Netzen und Zufallsfeldern verbindet. Der Hauptbeitrag der vorliegenden Arbeit liegt daher in der Entwicklung eines generischen statistischen graphischen Modells zur Bildinterpretation, welches unterschiedlichste Typen von Bildmerkmalen und die räumlichen sowie hierarchischen Strukturinformationen über eine multiskalen Bildsegmentierung integriert. Das Modell vereinheitlicht die existierender Arbeiten zugrunde liegenden Ideen, wie bedingter Zufallsfelder (conditional random field (CRF)) und Bayesnetze (Bayesian network (BN)). Dieses Modell hat eine klare statistische Interpretation als Maximum a posteriori (MAP) Schätzer eines mehrklassen Zuordnungsproblems. Gegeben die Struktur des graphischen Modells und den dadurch definierten Faktorisierungseigenschaften leiten wir die Wahrscheinlichkeitsverteilung des Modells ab. Dies führt zu einer Energiefunktion, die näherungsweise optimiert werden kann. Der jeweilige Typ der Bildmerkmale, die räumliche sowie hierarchische Struktur ist von dieser Formulierung unabhängig. Wir zeigen die Anwendung des vorgeschlagenen graphischen Modells anhand der mehrklassen Zuordnung von Bildregionen in Fassadenaufnahmen. Wir demonstrieren, dass das vorgeschlagene Verfahren zur Bildinterpretation, durch die Berücksichtigung räumlicher sowie hierarchischer Strukturen, signifikant bessere Klassifikationsergebnisse zeigt, als klassische lokale Klassifikationsverfahren. Die Leistungsfähigkeit des vorgeschlagenen Verfahrens wird anhand eines öffentlich verfügbarer Datensatzes evaluiert. Zur Klassifikation der Bildregionen nutzen wir ein Verfahren basierend auf einem effizienten Random Forest Klassifikator. Aus dem vorgeschlagenen allgemeinen graphischen Modell werden konkret zwei spezielle Modelle abgeleitet, ein hierarchisches bedingtes Zufallsfeld (hierarchical CRF) sowie ein hierarchisches gemischtes graphisches Modell. Wir zeigen, dass beide Modelle bessere Klassifikationsergebnisse erzeugen als die zugrunde liegenden lokalen Klassifikatoren oder die einfachen bedingten Zufallsfelder

    Efficient Belief Propagation for Perception and Manipulation in Clutter

    Full text link
    Autonomous service robots are required to perform tasks in common human indoor environments. To achieve goals associated with these tasks, the robot should continually perceive, reason its environment, and plan to manipulate objects, which we term as goal-directed manipulation. Perception remains the most challenging aspect of all stages, as common indoor environments typically pose problems in recognizing objects under inherent occlusions with physical interactions among themselves. Despite recent progress in the field of robot perception, accommodating perceptual uncertainty due to partial observations remains challenging and needs to be addressed to achieve the desired autonomy. In this dissertation, we address the problem of perception under uncertainty for robot manipulation in cluttered environments using generative inference methods. Specifically, we aim to enable robots to perceive partially observable environments by maintaining an approximate probability distribution as a belief over possible scene hypotheses. This belief representation captures uncertainty resulting from inter-object occlusions and physical interactions, which are inherently present in clutterred indoor environments. The research efforts presented in this thesis are towards developing appropriate state representations and inference techniques to generate and maintain such belief over contextually plausible scene states. We focus on providing the following features to generative inference while addressing the challenges due to occlusions: 1) generating and maintaining plausible scene hypotheses, 2) reducing the inference search space that typically grows exponentially with respect to the number of objects in a scene, 3) preserving scene hypotheses over continual observations. To generate and maintain plausible scene hypotheses, we propose physics informed scene estimation methods that combine a Newtonian physics engine within a particle based generative inference framework. The proposed variants of our method with and without a Monte Carlo step showed promising results on generating and maintaining plausible hypotheses under complete occlusions. We show that estimating such scenarios would not be possible by the commonly adopted 3D registration methods without the notion of a physical context that our method provides. To scale up the context informed inference to accommodate a larger number of objects, we describe a factorization of scene state into object and object-parts to perform collaborative particle-based inference. This resulted in the Pull Message Passing for Nonparametric Belief Propagation (PMPNBP) algorithm that caters to the demands of the high-dimensional multimodal nature of cluttered scenes while being computationally tractable. We demonstrate that PMPNBP is orders of magnitude faster than the state-of-the-art Nonparametric Belief Propagation method. Additionally, we show that PMPNBP successfully estimates poses of articulated objects under various simulated occlusion scenarios. To extend our PMPNBP algorithm for tracking object states over continuous observations, we explore ways to propose and preserve hypotheses effectively over time. This resulted in an augmentation-selection method, where hypotheses are drawn from various proposals followed by the selection of a subset using PMPNBP that explained the current state of the objects. We discuss and analyze our augmentation-selection method with its counterparts in belief propagation literature. Furthermore, we develop an inference pipeline for pose estimation and tracking of articulated objects in clutter. In this pipeline, the message passing module with the augmentation-selection method is informed by segmentation heatmaps from a trained neural network. In our experiments, we show that our proposed pipeline can effectively maintain belief and track articulated objects over a sequence of observations under occlusion.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163159/1/kdesingh_1.pd

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • …
    corecore