11 research outputs found

    SEN12MS -- A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion

    Get PDF
    The availability of curated large-scale training data is a crucial factor for the development of well-generalizing deep learning methods for the extraction of geoinformation from multi-sensor remote sensing imagery. While quite some datasets have already been published by the community, most of them suffer from rather strong limitations, e.g. regarding spatial coverage, diversity or simply number of available samples. Exploiting the freely available data acquired by the Sentinel satellites of the Copernicus program implemented by the European Space Agency, as well as the cloud computing facilities of Google Earth Engine, we provide a dataset consisting of 180,662 triplets of dual-pol synthetic aperture radar (SAR) image patches, multi-spectral Sentinel-2 image patches, and MODIS land cover maps. With all patches being fully georeferenced at a 10 m ground sampling distance and covering all inhabited continents during all meteorological seasons, we expect the dataset to support the community in developing sophisticated deep learning-based approaches for common tasks such as scene classification or semantic segmentation for land cover mapping.Comment: accepted for publication in the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (online from September 2019

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    AGSPNet: A framework for parcel-scale crop fine-grained semantic change detection from UAV high-resolution imagery with agricultural geographic scene constraints

    Full text link
    Real-time and accurate information on fine-grained changes in crop cultivation is of great significance for crop growth monitoring, yield prediction and agricultural structure adjustment. Aiming at the problems of serious spectral confusion in visible high-resolution unmanned aerial vehicle (UAV) images of different phases, interference of large complex background and salt-and-pepper noise by existing semantic change detection (SCD) algorithms, in order to effectively extract deep image features of crops and meet the demand of agricultural practical engineering applications, this paper designs and proposes an agricultural geographic scene and parcel-scale constrained SCD framework for crops (AGSPNet). AGSPNet framework contains three parts: agricultural geographic scene (AGS) division module, parcel edge extraction module and crop SCD module. Meanwhile, we produce and introduce an UAV image SCD dataset (CSCD) dedicated to agricultural monitoring, encompassing multiple semantic variation types of crops in complex geographical scene. We conduct comparative experiments and accuracy evaluations in two test areas of this dataset, and the results show that the crop SCD results of AGSPNet consistently outperform other deep learning SCD models in terms of quantity and quality, with the evaluation metrics F1-score, kappa, OA, and mIoU obtaining improvements of 0.038, 0.021, 0.011 and 0.062, respectively, on average over the sub-optimal method. The method proposed in this paper can clearly detect the fine-grained change information of crop types in complex scenes, which can provide scientific and technical support for smart agriculture monitoring and management, food policy formulation and food security assurance

    Remote Sensing Image Scene Classification: Benchmark and State of the Art

    Full text link
    Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.Comment: This manuscript is the accepted version for Proceedings of the IEE

    Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects

    Get PDF
    Hyperspectral Imaging (HSI) has been extensively utilized in many real-life applications because it benefits from the detailed spectral information contained in each pixel. Notably, the complex characteristics i.e., the nonlinear relation among the captured spectral information and the corresponding object of HSI data make accurate classification challenging for traditional methods. In the last few years, Deep Learning (DL) has been substantiated as a powerful feature extractor that effectively addresses the nonlinear problems that appeared in a number of computer vision tasks. This prompts the deployment of DL for HSI classification (HSIC) which revealed good performance. This survey enlists a systematic overview of DL for HSIC and compared state-of-the-art strategies of the said topic. Primarily, we will encapsulate the main challenges of traditional machine learning for HSIC and then we will acquaint the superiority of DL to address these problems. This survey breakdown the state-of-the-art DL frameworks into spectral-features, spatial-features, and together spatial-spectral features to systematically analyze the achievements (future research directions as well) of these frameworks for HSIC. Moreover, we will consider the fact that DL requires a large number of labeled training examples whereas acquiring such a number for HSIC is challenging in terms of time and cost. Therefore, this survey discusses some strategies to improve the generalization performance of DL strategies which can provide some future guidelines
    corecore