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ABSTRACT: 

 
With the rapid progress of China’s urbanization, research on the automatic detection of land-use patterns in Chinese cities is of 

substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning 

method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and 

classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, 

the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model’s 

ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a 

random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on 

the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) 

method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. 

In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use 

classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate 

the impact of urban-planning schemes. 

 

1. INTRODUCTION 

Land-use and land-cover (LULC) information plays an essential 

role in many fields, such as environmental monitoring, urban 

planning and governmental management (Liu et al., 2017; Lu 

and Weng, 2006; Williamson et al., 2010; Zhang et al., 2015). 

The transformation of urban functional structures and urban 

land-use patterns is affected not only by top-down influences 

from government but also by bottom-up influences from 

residents (Chen et al., 2017). With economic development, the 

transformation of China’s urban land-use pattern is accelerating. 

Traditional urban land-use surveying and mapping methods are 

costly in time and money. Thus, it is important to develop a 

quick and accurate method to sense urban land-use patterns via 

remote-sensing imagery. 

 

In recent years, mainstream studies on recognizing urban 

land-use patterns have been based on high spatial resolution 

(HSR) image classification (Bratasanu et al., 2011; Chen et al., 

2013; Wen et al., 2016; Zhong et al., 2015). HSR images 

contain a substantial amount of natural-physical geospatial 

information, which is widely used in the object-oriented 

classification (OOC) method to extract urban land-use 

information (Bratasanu et al., 2011; Durand et al., 2007). The 

traditional OOC method classifies urban land-use or land-cover 

types by distinguishing multi-dimensional features, including 

spectrum, texture and shape, of various land parcels. 

 

Urban land-use patterns are strongly correlated with 

government policies and resident activities (Hu et al., 2016; Liu 

et al., 2017; Pei et al., 2014). The inner structure of urban land 

use is complicated wherever the so-called ‘semantic gap’ 

requires bridging (Bratasanu et al., 2011; Liu et al., 2017). That 

is, recognizing urban land-use conditions requires consideration 

of the composition and structure of internal ground objects. 

Such consideration requires a substantial human effort to obtain 

high-level semantic information and then to classify the urban 

land-use type via scene classification (Liu et al., 2017; Zhong et 

al., 2015). The state of the art of classifying urban land use via 

scene classification is represented by Zhong et al. (2015), who 

used a probabilistic topic model (PTM) to fuse spectral and 

textural features from HSR images. However, most 

remote-sensing, imagery-based urban land-use detection 

methods are implemented on land parcels with regular shapes. 

However, to our knowledge, the fundamental unit of land use in 

most cities is the irregular land parcel or traffic analysis zones 

planned by governments. Irregular parcels cause uncertainty 

when the features of remotely sensed images are extracted (Liu 

et al., 2017; Long and Liu, 2015; Yao et al., 2016). Specifically, 

with an increase in image spatial resolution, the spatial structure 

of ground components exhibits a recognizable heterogeneity, 

which results in a “multi-scale effect” problem when such 

features are classified (Zhong et al., 2016). This problem is a 

significant difficulty faced by traditional OOC methods. 

 

Only a small number of studies have focused on fusing 

remote-sensing image data with multi-source social media data 

to classify urban land use (Liu et al., 2017; Yao et al., 2016). For 

example, Hu et al. (2015) adopted Landsat remote-sensing 

images and POI data to recognize urban land-use conditions 

(Hu et al., 2015). Liu et al. (2017) used Worldview-2 images 

and several social media data sources with probabilistic topic 

models (PTMs) to detect the urban land-use condition in 

Guangzhou and obtained relatively good results (Liu et al., 

2017). However, the accuracy of multi-source fusion methods 

has not been thoroughly demonstrated. In particular, the 

influence of bias in social-media data must be further 
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considered (Zheng, 2015). 

 

Probing more deeply into HSR images to obtain high-level 

semantic information to simulate the urban spatial 

transformation is a popular recent research approach (Yao et al., 

2016; Zhong et al., 2016). Zhong et al. (2016) manipulated a 

deep-learning method and created HSR image subsets to solve 

the multi-scale problem in remote-sensing image classification 

(Zhong et al. 2016). Jean used the transfer-learning method to 

transfer the knowledge of a pre-trained, object-based image 

classifier to extract income distribution (Jean et al., 2016). As 

these studies indicate, applying deep learning in the field of 

remote sensing remains in the preliminary stage, and the 

integration of the method into urban land-use classification is 

even less advanced. However, several studies have 

demonstrated that the deep-learning method is effective in 

solving the ‘semantic gap’ problem in semantic classification 

because it avoids establishing a complex, rule-based classifier 

(Nogueira et al., 2016; Zhong et al., 2016). Thus, deep learning 

represents a highly promising approach to the study of urban 

land-use conditions and deserves further investigation. 

 

This article introduces an urban land-use classification method 

that integrates deep learning and semantic models to classify 

irregular land parcels only using HSR images. First, to classify 

land-cover images, the proposed method uses public land-cover 

data sets (UC-Merced and WHU-SIRI) to transfer information 

from an object image-based deep-learning model (Inception v5). 

Then, with a retrained deep-learning model, we extract the class 

types of random patches inside the land parcels with irregular 

shapes and assemble a visual bag of words. Finally, we use a 

simple semantic model named TF-IDF to establish the semantic 

features of each land parcel and a random forest (RFA)-based 

classifier to classify the urban land-use conditions. 

 

2. STUDY AREA AND DATA 

Known as the Haizhu district, the study area is located in the 

central area of the city of Guangzhou, Guangdong Province 

(Figures 1 and 2). It has a total area of 102 km2 and a 

permanent population of approximately 1,010,500. Guangzhou, 

which is the capital of Guangdong Province and boasts a history 

of approximately 2,000 years, is the political, economic and 

cultural center of southern China. The Haizhu district is the 

main, central district of Guangzhou and exhibits a complicated 

urban functional structure and various land-use patterns. The 

land-use data for the study area at the land-parcel level consist 

of traffic analysis zones (TAZs) (Figure 1). Based on high 

spatial resolution (HSR) image data with a spatial resolution of 

0.5 meters downloaded from Tianditu.cn (Figure 2) and field 

sampling, we classify 593 TAZs in the study area into 7 

different dominated land-use types: Public 

management-services land (M), Industrial land (I), Green land 

(G), Commercial land (C), Residential land (R), Park land (P) 

and Urban village (U) (Liu et al., 2017). 

 

 

Figure 1. Urban land-use data obtained from manual 

interpretation at the land-parcel level for the case-study area: 

Haizhu district, Guangzhou, Guangdong Province. 

 

 

Figure 2. High spatial resolution (HSR) remote-sensing image 

of the study area provided by Worldview-2 satellite. 

 

To use the high-accuracy object-based deep-learning model, we 

retrain the Google-introduced Inception v5 model to classify 

standard land-cover data sets: UC-Merced and WHU-SIRI. The 

UC-Merced land-cover data set 

(http://vision.ucmerced.edu/datasets/landuse.html) consists of 

21 different types of land-cover remote-sensing image. Each 

class contains 100 different 2-meter-resolution remote-sensing 

images. Each image is 256*256 pixels, which means that the 

resolution of a single pixel is 1 foot. The 27 classes include 

agricultural land, airport, baseball court, beach, building, 

agricultural, airplane, baseball diamond, beach, buildings, 

chaparral, dense residential, forest, freeway, golf course, harbor, 

intersection, medium residential, mobile home park, overpass, 

parking lot, river, runway, sparse residential, storage tanks and 

tennis court. The UC-Merced image data are from the U.S. The 

WHU-SIRI land-use data set 

(http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.ht

ml) consists of 12 different types of land-cover remote-sensing 

images. Each class contains 200 different 2-meter-resolution 

remote-sensing images, and each image is 200*200 pixels. 

These 12 classes include agriculture, commercial, harbor, idle 

land, industrial, meadow, overpass, park, pond, residential, river 

and water. The WHU-SIRI data were collected via Google Earth 

within the urban area of China. 
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3. METHOD 

A flowchart of the proposed model is presented in Figure 3. 

This study aims to classify urban land use at the irregular 

land-parcel level by integrating deep-learning and 

scene-classification in the model. First, we transfer the 

information obtained using a pre-trained object image-based 

deep-learning model to classify land-cover images by retraining 

on standard land-cover data sets (UC-Merced and WHU-SIRI). 

Then, using the retrained model, we transform each multi-scale 

sample into a word according to land-cover type and count the 

word frequencies under the unit of land parcel (TAZ). Last, we 

use the TF-IDF algorithm to transform the word frequencies 

within each TAZ into semantic features and use the manually 

interpreted urban land-use types and semantic features to 

construct a random-forest (RFA)-based classifier. Subsequently, 

the model’s accuracy is assessed. 

 

 

Figure 3. Flowchart of the proposed model for classifying urban 

land use by integrating Google Tensorflow and scene 

classification. 

 

3.1. Retraining the Google Tensorflow model 

Google Inception v5 is a state-of-the-art convolutional neural 

network (CNN)-based deep-learning model trained on 

ImageNet object-image-based data sets (Abadi et al., 2016; 

Krizhevsky et al., 2012) at the ImageNet Challenge, 2015. The 

structure of Inception v5 is shown in Figure 4. The top-1 and 

top-5 error rates of this model are 21.2% and 5.6%, respectively, 

which indicates a perfect image-feature extraction ability 

(Abadi et al., 2016). 

 

As shown in Figure 4, Inception v5 consists of a convolution 

layer, average pooling layer, maximum pooling layer, 

concatenation layer, dropout layer, fully connected layer and 

Softmax layer. Precisely like the other CNN model, the final 

Softmax layer can be considered a multi-class logistical 

classifier whose parameters change through iterations (Abadi et 

al., 2016; Simonyan and Zisserman, 2014). The former input 

layer of the Softmax layer is the Bottleneck layer, which can 

generate the CNN-based features of input images (Jean et al., 

2016). After generalization from the pre-trained Inception 

model, the output high-dimensional vector (with a number of 

2048) from the Bottleneck layer can be the best representative 

vector of any image. Then, the Softmax layer activates the 

high-dimensional vector and generates the class of each image. 

The formation of the Softmax function is as follows: 

𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

  𝑗 = 1, … , 𝐾     (1) 

 

In Equation (1), 𝜎(𝑧)𝑗  represents the probability of samples 

being classified into class 𝑗, and 𝑧𝑗  represents each element 

from the high-dimensional vector produced by the Bottleneck 

layer. 

 

 

Figure 4. Structure of the convolutional neural network in 

Google Tensorflow. 

 

The Inception model is compatible with classifying 

object-based images. However, because of the multi-scale effect, 

remote-sensing images might not achieve satisfactory results 

using this method (Zhong et al., 2016). Therefore, in our study, 

we use two mainstream land-cover data sets (UC-Merced and 

WHU-SIRI) to retrain the Inception model with a sub-sampling 

method (LPCNN) introduced by Zhong et al. (2015). In this 

step, we set a range of size percentages (0.5~1.0) to randomly 

create subsets of the input images of a certain size. With this 

method, on the one hand, we can offset the multi-scale effect of 

remote-sensing imagery. On the other hand, the CNN model can 

improve its reliability and stability when training and predicting 

(Krizhevsky et al., 2012; Zhong et al., 2016). 

 

3.2. Classifying urban land use at the irregular land-parcel 

scale 

The basic units considered using the proposed method are 

irregular urban land parcels, which cause difficulties in 

sampling, feature extraction and training. Therefore, in the 

proposed method, we sample the sub-land parcels within each 

parcel on a large scale and input the sample data into the 

retrained model to obtain the class of each sub-land parcel, 

which can be regarded as words. The labels of all the sub-land 

parcels constitute the visual bag-of-words (VBoW), from which 

word frequencies can be calculated. By inputting the word 

frequencies into semantic models, the semantic features are 

generated, which are used to construct an urban land-use 

classification model (Liu et al., 2017). The procedure for 

randomly patching the sub-land parcels is as follows: 

 

a. First, we use a remote-sensing image processing 

module to extract four peripheral coordinates values: 

𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥. The combinations of these values 

can represent the map coordinates of four external 

rectangle points. 

b. Then, we randomly select the seed point coordinate 

values 𝑥𝑠𝑒𝑒𝑑 , 𝑦𝑠𝑒𝑒𝑑  in the range 
[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥], respectively, and calculate the 

smaller value of 𝑥𝑚𝑎𝑥 − 𝑥𝑠𝑒𝑒𝑑 and 𝑦𝑚𝑎𝑥 − 𝑦𝑠𝑒𝑒𝑑, which 

is 𝑙 = 𝑚𝑖𝑛 (𝑥𝑚𝑎𝑥 − 𝑥𝑠𝑒𝑒𝑑 , 𝑦𝑚𝑎𝑥 − 𝑦𝑠𝑒𝑒𝑑). 

c. A constant 𝑤𝑚𝑖𝑛  is set as the minimum scale 

constant of sampling at this time, which means that the 
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width of each random square window 𝑤 ∈ [𝑤𝑚𝑖𝑛, 𝑙]. If 

𝑙 < 𝑤𝑚𝑖𝑛, then 𝑤 = 𝑤𝑚𝑖𝑛. 

d. Considering the continuity and heterogeneity of the 

land parcels, when the edge of the parcel is over the 

sample window, an additional judgment is required to 

determine if the sample window is located in a certain land 

parcel. In our proposed method, we determine this 

information by calculating the number of pixels in the 

sample window that belong to the certain land parcel. If the 

pixels that belong to a certain land parcel amount to more 

than 80% of the entire sample window pixels, we regard 

the sample as valid. 

 

To decrease the uncertainty of random sub-parcel sampling of 

irregular land parcels, the proposed method repeats the four 

previously described steps 300 times for each land parcel. 

Therefore, approximately 1 to 300 different sub-land parcels 

can be generated in each land parcel. The form of sub-land 

parcel data in each TAZ is 𝑆 = [𝑆1, 𝑆2, 𝑆3, ⋯ ] , where 𝑆𝑖 

indicates a square parcel whose width belongs to [𝑤𝑚𝑖𝑛, 𝑙] (the 

unit is 1 pixel). Using the retrained object image-based 

Inception (v5)-CNN model, we can calculate the word 

frequencies of the land-use types in each land parcel. 

 

Semantic models are good at mining the topical features within 

word frequencies. Therefore, they are widely used in land-use 

scene-classification methods (Liu et al., 2017; Wen et al., 2016; 

Zhang et al., 2015; Zhong et al., 2015). Because the dictionary 

size in the proposed method is not large, we adopt a simple 

TF-IDF transformation, which is a feature-weighted text-topic 

mining method that is widely used in information retrieval and 

text mining (Ramos, 2003). The TF-IDF semantic-features 

transformation method is as follows: 

 

{

𝑡𝑓𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘

𝑖𝑑𝑓𝑖 = log
|𝐷|

|{𝑗:𝑡𝑖∈𝑑𝑗}|+1

      (2) 

 

The 𝑛𝑖,𝑗 in Equation (2) is the appearance frequency of the 𝑖𝑡ℎ 

land-use type in land parcel 𝑑𝑗 , and ∑ 𝑛𝑘,𝑗𝑘  represents the 

total sampling times of a single parcel. |𝐷|  represents the 

number of TAZs in the study area. The denominator of the 𝑙𝑜𝑔 

function is the number of land parcels that have land use 𝑡𝑖. 

Therefore, the calculation of the TF-IDF value of the 𝑗𝑡ℎ 

land-use type in the 𝑖𝑡ℎ TAZ is as follows: 

 

𝑡𝑓𝑖𝑑𝑓𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × 𝑖𝑑𝑓𝑖        (3) 

 

After calculating the TF-IDF semantic features of each irregular 

land parcel, we use a random-forest (RFA) and 

manual-interpretation model to classify the urban land-use type 

in the study area. RFA is an aggregation of decision-tree 

classifiers. By extracting random samples from training data 

sets using the bagging method (Biau, 2012), a new sub-data set 

is generated. Then, individual decision trees are constructed in 

each training sub-data set during random feature selection. 

Unlike the traditional decision-tree method, these decision trees 

are not pruned during the growth process. Therefore, we can 

obtain an out-of-bag (OOB)-based estimation error report from 

each decision tree. By averaging the errors of the decision trees 

via OOB estimation, the RFA generalization error can be 

calculated. In certain studies, the RFA-based classification 

model has overcome the multiple correlative problems among 

spatial variables, particularly in higher-dimensional fitting 

situations (Palczewska et al., 2014). Using semantic features 

and land-use types to train the RFA classifier and test it on the 

remaining TAZ semantic features from the study area, we obtain 

the urban land-use types in the study area. 

 

3.3. Comparison of methods and accuracy assessment 

In this study, accuracy assessment is based on the 

object-oriented classification evaluation method. By obtaining 

the final urban land-use classification result and calculating the 

confusion matrix, we can obtain the overall accuracy (OA) and 

kappa coefficient, with detailed commission errors, omission 

errors, product accuracy (PA) and user accuracy (UA) for each 

class. Additionally, for comparison with the proposed method, 

we use two different sub-sampling methods to classify the urban 

land-use type based on the retrained Inception model and the 

RFA algorithm. These two methods are as follows: 

 

RECT: Samples the remote-sensing images in a land parcel’s 

external rectangle shape and directly retrains on the Inception 

(v5)-CNN model. After the retraining step has been completed, 

this model is used to classify the urban land-use types at the 

TAZ level. 

 

RAND: Based on the multi-scale sampling method described in 

Section 3.1, in which the sampling results are directly retrained 

on the Inception (v5)-CNN model. When predicting the urban 

land-use types, a voting strategy is used to determine the 

predominate urban land-use type of a TAZ, whereby the most 

frequently appearing land-use type is assigned as the TAZ’s 

final land-use type. 

 

4. RESULTS 

4.1. Results of Google Tensorflow retraining 

During the retraining the Google Inception model, we created 

10,000 and 20,000 remote-sensing parcels with land-cover 

labels following the completion of multi-scale sampling 

processes from the UC-Merced and WHU-SIRI land-cover data 

sets. With these remote-sensing parcels, we constructed the 

training data set and set the percentages of the training data, 

validation data and testing data as 0.8, 0.1 and 0.1, respectively. 

The learning rate of the retraining is set at 0.001 and the number 

of iterations at 10,000. The batch size of each training step is 

100, which means that each time we input 100 samples to fit the 

model. For the other parameters, we follow the default values. 

The code of the retraining model is under the Google 

Tensorflow framework with GPU boosting. The training and 

validation accuracy of the retraining process is shown in Figure 

5. We can observe that the overall accuracy of retraining the 

Inception model to classify the urban land-cover type is 

relatively high (approximately 0.8~0.9). The accuracy 

converges after 1000 iterations. Compared to WHU-SIRI, 

retraining on the UC-Merced data set exhibits a higher testing 

accuracy, which can be explained by the lesser complexity and 

variety of ground components in the U.S. than in China. (The 

remote-sensing imagery of UC-Merced is from U.S. locations. 

WHU-SIRI’s locations are in China.) That is, the stronger 

spatial heterogeneity of the WHU-SIRI data results in lower 

classification accuracy. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W7, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W7-981-2017 | © Authors 2017. CC BY 4.0 License.

 
984



 
Figure 5. Testing accuracy (y-axis) vs. iteration times (x-axis) 

during the Google Tensorflow training process. 

 

4.2. Urban land-use classification results  

When retraining the Google Inception model and fusing the 

UC-Merced and WHU-SIRI data sets, we set the percentages of 

training data, validation data and testing data to 0.8, 0.1 and 0.1, 

respectively. After finishing the retraining process, we obtained 

an average training accuracy of 88.50% for the testing data set 

of land-cover data. Based on the method described in Section 

3.2, we use a random size square sampling window (minimum 

size: 20*20 pixels) to calculate the land-cover type frequencies 

in each TAZ and obtain the TF-IDF-based semantic features for 

each irregular land parcel. Then, we randomly divide the 

semantic features data set into two parts: 60% for the training 

data for RFA-based classifiers and the remaining 40% for 

testing data. In addition, in the training data set, we select 20% 

of the data for use in the OOB cross-validation data set. 

 

We applied different methods of sampling and land-use 

classification, including RECT, RAND and the proposed 

method. After the training and classifying process was repeated 

100 times, the average accuracy-assessment results were as 

follows. Generally, the classifying accuracy of the proposed 

method (OA=0.794, Kappa=0.737) was significantly higher 

than that of traditional sampling and urban land-use 

classification methods. Only using the external rectangular area 

of the TAZ to train and classify and ignoring the irregularity of 

TAZ land parcels, as in the RECT method, brings in external 

data that can be considered as noise and results in significantly 

lower classification accuracy (OA=0.140, Kappa=0.060). The 

RAND method takes the irregularities of land parcels into 

account and attains higher accuracy than the RECT method 

(OA=0.528, Kappa=0.418). However, by only considering the 

voting results, ground objects with small size and a large 

distribution density (such as Green land) cause errors in 

classification results. In addition, the RAND method does not 

consider the high-level semantic information that exists in land 

parcels, and urban land-use patterns require semantic 

information involved in scene-classification tasks (Zhong et al., 

2015). That is, the RAND method remains unable to bridge the 

semantic gap, which decreases the quality of the classification 

results. 

 

Sampling method OA Kappa 

RECT 0.140  0.060  

RAND 0.528  0.418  

Proposed 0.794  0.737  

Table 1. Average accuracy of urban land-use classification via 

different methods. 

 

Figures 6 and 7 and Table 2 display the urban land-use patterns, 

confusion matrixes and PA/UA of the three sub-land parcel 

sampling methods, respectively. Based on the results, land 

parcels with regular shapes, such as Green land, result in the 

best classification accuracy. The classification accuracy of land 

parcels with regular shape and low spatial heterogeneity, such as 

Residential land and Urban village, increases significantly with 

the RAND method. Last, the RAND method cannot effectively 

use the semantic information from the remote-sensing images, 

which results in classification errors regarding Park land and 

Green land. 

 

From the confusion matrix (Figure 7), we can observe that the 

proposed method can effectively increase classification 

accuracy and minimize the confusion condition between 

different ground components. For example, the classification 

accuracy for Residential land is the highest: 90.16%. Because 

Residential land is typically adjacent to Commercial land and 

Public-management-services land, high-level semantic features 

must be considered in classfying these land-use types. Therefore, 

in the RAND and RECT sub-sampling methods, the 

classification accuracies for Residential land are low. By 

integrating the deep-learning method, the proposed method 

could effectively extract high-level semantic features and obtain 

highly accurate land-use classification results. 

 

Notably, while Green land and Park land could be effectively 

distinguished, 11.76% of Park land was mistakenly classified as 

Green land. Urban village is a ground component that consists 

of patches crowded with houses. Its classification accuracy 

reached 71.31%, with 18.03% mistakenly classified as 

Residential land. To our knowledge, Green land has little visual 

difference from Park land. Similarly, Urban village differs little 

in appearance from Residential land. That is, only by probing 

deeply into the inner structure of population characteristics 

could the method discern the differences between visually 

similar remote-sensing image parcels. From remote-sensing 

imagery, we can only obtain natural physical properties, which 

is inadequate for urban land-use detection because the 

socio-economic properties are lacking (Hu et al., 2016; Liu et 

al., 2017), thus resulting in classification errors. 

 

 

Figure 6. Urban land-use classification results for the different 

methods: (A) RECT, (B) RAND, (C) Proposed method. 
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Figure 7. Confusion matrixes of urban land-use classification 

results for the different methods: (A) RECT; (B) RAND and (C) 

Proposed method

Sampling method LU Commission error Omission error Product accuracy User accuracy 

RECT 

M 0.760  0.976  0.024  0.240  

I 1.000  1.000  0.000  0.000  

G 0.230  0.555  0.445  0.770  

C 0.615  0.914  0.086  0.385  

R 0.979  0.871  0.129  0.021  

P 0.971  0.000  1.000  0.029  

U 1.000  1.000  0.000  0.000  

      

RAND 

M 0.720  0.300  0.700  0.280  

I 0.425  0.579  0.421  0.575  

G 0.054  0.694  0.306  0.946  

C 0.821  0.462  0.538  0.179  

R 0.425  0.196  0.804  0.575  

P 0.912  0.000  1.000  0.088  

U 0.557  0.018  0.982  0.443  

      

Proposed 

Method 

M 0.360  0.000  1.000  0.640  

I 0.208  0.282  0.718  0.792  

G 0.162  0.184  0.816  0.838  

C 0.282  0.034  0.966  0.718  

R 0.098  0.202  0.798  0.902  

P 0.412  0.167  0.833  0.588  

U 0.287  0.230  0.770  0.713  

Table 2. Urban classification accuracy of each land-use type for the different methods. 

 

4.3. Parameter sensitivity analysis 

Using the retrained Inception model (based on the fused 

UC-Merced and WHU-SIRI data) and constructing effective 

TF-IDF semantic features, we attained an overall accuracy of 

0.794 for the proposed study area. The random-minimum scale 

parameter 𝑤𝑚𝑖𝑛 is sensitive when assigning different values. 

This parameter is used because we require a sampling window 
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with a certain size to extract the sub-land parcels and use the 

retrained model to assign a label to this sub-land parcel. 

Therefore, we tested the sample-window size with different 

values using the two land-cover data sets (UC-Merced and 

WHU-SIRI). The size of the sub-land parcels ranged from 10 to 

100 pixels. The final accuracy results are presented in Figure 8.  

We could calculate that the overall accuracy first increases and 

then decrease with the increase in 𝑤𝑚𝑖𝑛 for the two land-cover 

data sets. The edge effect (i.e., that the edged parcel covers a 

substantial number of outlier data and a large amount of noise) 

causes erroneous words to appear in the VBoW, thus decreasing 

the accuracy of the urban land-use classification results. 

Therefore, the proposed method adopts a 𝑤𝑚𝑖𝑛 of 20 pixels to 

obtain the best classification results. 

 

 

Figure 8. Accuracy assessment (y-axis) of urban land-use 

classification using different sampling windows (x-axis) during 

prediction processes. 

 

5. DISCUSSION AND CONCLUSIONS 

The question of how to improve urban land-use classification 

results for the moderate scale has been a popular research topic 

in the fields of remote sensing and GIS (Chen et al., 2017; Liu 

et al., 2017; Yao et al., 2016; Yuan et al., 2012). This study 

proposed an effective model to classify urban land use at the 

irregular land-parcel level by integrating a convolutional neural 

network trained on object-based images (Inception). First, we 

used public land-cover data sets to retrain the high-accuracy 

Inception (v5)-CNN model on public land-cover datasets. We 

used this retrained model to generate the classes of sub-land 

parcels within each irregular land parcel (TAZ). Then, we 

calculated the class frequencies of these sub-land parcels in 

each TAZ and constructed a VBoW by adopting TF-IDF, a 

simple semantic model used to generate high-dimension 

semantic features. Subsequently, we trained an RFA classifier to 

classify the urban land-use patterns in the study area (OA=0.793, 

Kappa=0.737). 

 

Compared to traditional urban land-use classification methods, 

the proposed model, which integrates deep learning and 

semantic classification, could accurately classify the urban 

land-use types at the level of irregular land parcel. The 

retraining data for Inception (v5)-CNN were public land-cover 

data sets (UC-Merced and WHU-SIRI) downloaded from the 

Internet, which indicates the transfer-learning capability of the 

proposed model to a certain extent. By integrating a semantic 

model, we could mine the semantic information from 

high-resolution remote-sensing image data at the irregular 

land-parcel level and classify the urban land-use type based on 

scene classification. In future research, more effective, classical 

probabilistic topic models (PTMs), such as pLSA, LDA and 

Word2Vec (Yao et al., 2016), should be considered to 

effectively mine high-level semantic information and increase 

our model’s accuracy. 

 

This study introduced a method that integrates deep learning 

and a semantic model to mine the urban functional structure. 

However, this method has several inadequacies. The data used 

in the proposed method were only high-resolution 

remote-sensing images, which can only be used to mine the 

natural physical information of ground components. The 

inability to mine socio-economic information inside the land 

parcels causes a classification error, for example, regarding 

ground objects with similar visual effects, such as Green land 

and Park land. Liu et al. (2017) proposed a method that fuses 

HSR images and social media data and attained relatively high 

accuracy (OA=0.865, Kappa=0.828) in the same study area. 

However, they attained lower accuracy when only 

remote-sensing images were used (OA=0.685, Kappa=0.591). 

Therefore, in future research, we should consider adding 

multi-source social media data to the model and seek to 

effectively mine the socio-economic properties while increasing 

urban land-use classification accuracy. Additionally, 

automatically generating sub-land parcels in irregular land 

parcels is a topic worthy of further study. The sampling method 

in the proposed model is relatively simple and could not obtain 

complete sub-land parcels in certain long, broken TAZs, which 

resulted in classification errors. This problem will be discussed 

in future research.  

 

Generally, the proposed model could effectively overcome the 

multi-scale effect of high-resolution remote-sensing images, 

classify urban land-use types at the level of irregular land 

parcels and demonstrate the ability of transfer learning. In future 

research, we will apply multi-source social media data to fully 

consider socio-economic properties. Thus, we hope to obtain 

more accurate urban functional structure and urban land-use 

classification results. The proposed model can meet the future 

need for the rapid detection of urban functional zones and urban 

land-use types, thus effectively supporting urban planning and 

government management. 
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