7 research outputs found

    Scattered Pilot Performance and Optimization for ATSC 3.0

    Full text link
    [EN] The next-generation U.S. digital terrestrial television (DTT) standard ATSC 3.0 is the most flexible DTT standard ever developed, outperforming the state-of-the-art digital video broadcasting-terrestrial 2nd generation (DVB-T2) standard. This higher flexibility allows broadcasters to select the configuration that better suits the coverage and capacity requirements per service. Regarding the selection of pilot patterns, whereas DVB-T2 provides eight different patterns with a unique pilot amplitude, ATSC 3.0 expands up to 16, with five different amplitudes per pattern. This paper focuses on the pilot pattern and amplitude performance and optimization for time and power multiplexing modes, time division multiplexing and layered division multiplexing (LDM), respectively, of ATSC 3.0. The selection of the optimum pilot configuration is not straightforward. On the one hand, the pilots must be sufficiently dense to follow channel fluctuations. On the other hand, as long as pilot density is increased, more data overhead is introduced. Moreover, this selection is particularly essential in LDM mode, because the LDM implementation in ATSC 3.0 requires that both layers share all the waveform parameters, including pilot pattern configuration. In addition, there is an error proportional to the channel estimate of the top layer that affects to the lower layer performance.This work was supported in part by the Institute for Information and Communications Technology (IITP) by the Korea Government (MSIP) (Development of Service and Transmission Technology for Convergent Realistic Broadcast) under Grant R0101-15-294, and in part by the Ministerio de Educación y Ciencia, Spain, by European FEDER Funds under Grant TEC2014-56483-R.Garro, E.; Gimenez, JJ.; Park, SI.; Gomez-Barquero, D. (2017). Scattered Pilot Performance and Optimization for ATSC 3.0. IEEE Transactions on Broadcasting. 63(1):282-292. https://doi.org/10.1109/TBC.2016.2630304S28229263

    MIMO Scattered Pilot Performance and Optimization for ATSC 3.0

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] ATSC 3.0 is the latest digital terrestrial television (DTT) standard, and it allows a higher spectral efficiency and/or a transmission robustness with multiple-input multiple-output (MIMO) technology compared to existing DTT standards. Regarding MIMO channel estimation, two pilot encoding algorithms known as Walsh-Hadamard encoding and Null Pilot encoding are possible in ATSC 3.0. The two MIMO pilot algorithms are standardized so as to have the same pilot positions and the same pilot boosting as single-input single-output, and the optimum pilot configuration has not been fully evaluated for MIMO. This paper focuses on the performance evaluation and optimization of the pilot boosting and the pilot patterns for two MIMO pilot encoding algorithms in ATSC 3.0 using physical layer simulations. This paper provides a great benefit to broadcasters to select the MIMO pilot configuration including pilot boosting, pilot pattern, and pilot encoding algorithm that better suits their service requirements. Several channel interpolation algorithms have been taken into account as a typical receiver implementation in both fixed SFN reception and mobile reception.This work was supported in part by the Ministry of Economy and Competitiveness of Spain under Grant TEC2014-56483-R, and in part by the European FEDER Fund.Shitomi, T.; Garro, E.; Murayama, K.; Gomez-Barquero, D. (2018). MIMO Scattered Pilot Performance and Optimization for ATSC 3.0. IEEE Transactions on Broadcasting. 64(2):188-200. https://doi.org/10.1109/TBC.2017.2755262S18820064

    Performance evaluation of MIMO channel estimation for ATSC 3.0

    Full text link
    [Otros] ATSC 3.0, the latest Digital Terrestrial Television (DTT) standard, allows a higher spectral efficiency and/or a transmission robustness with Multiple-Input Multiple-Output (MIMO) technology compared to existing single-antenna DTT networks. Regarding MIMO channel estimation, two pilot encoding algorithms known as Walsh-Hadamard encoding and Null pilot encoding are possible in ATSC 3.0. The two MIMO pilot algorithms are standardized so as to have the same pilot positions and the same pilot boosting as SISO, but the performance has not been evaluated. This paper focuses on the performance evaluation of the two MIMO pilot encoding algorithms in ATSC 3.0 using physical layer simulations. Results can be used as guidelines or recommended practices to broadcasters to select the MIMO pilot encoding algorithm that better suits their service requirments. Several channel estimation algorithms have been evaluated in both mobile and fixed reception conditions. The simulation results show that Null pilot encoding provides slightly better performance than WalshHadamard encoding for fixed reception but worse performance for mobile reception, especially at high signal-to-noise ratios.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain (TEC2014-56483-R), co-funded by European FEDER funds.Shitomi, T.; Garro, E.; Murayama, K.; Gomez-Barquero, D. (2017). Performance evaluation of MIMO channel estimation for ATSC 3.0. IEEE. 1-5. https://doi.org/10.1109/BMSB.2017.7986237S1

    ATSC 3.0 시스템의 2x2 MIMO 방식에 대한 분석

    Get PDF
    본 논문에서는 ATSC 3.0 시스템의 2x2 multiple-input multiple-output (MIMO) 송신기를 구현하였으며 이에 따른 수신기 구조를 설계하고 성능을 분석한다. ATSC 3.0 시스템의 MIMO 방식은 송신기에서 입력 스트림의 역다중화 (demultiplexing) 및 프리코딩 (precoding)을 통하여 공간 다이버시티 (spatial diversity) 및 공간 다중화 (spatial multiplexing) 이득을 얻을 수 있다. 또한, 전산 실험을 통하여 부호율, 프리코딩, 채널 상관에 따른 성능 결과를 제시한다.|In ATSC 3.0 multiple-input multiple-output (MIMO) system, spatial diversity and multiplexing gains can be obtained using the spatial demultiplexer and MIMO precoder. In this thesis, the transmiting and receiving simulator of 2x2 MIMO system for ATSC 3.0 is implemented and the performance of 2x2 MIMO system is analyzed using the implemented simulator. The computer simulations are performed with various system parameters under severe channel condition. Simulation results show that the MIMO system of ATSC 3.0 can improve the capacity.1. 서 론 2. ATSC 3.0 2x2 MIMO 송신기 2.1 ATSC 3.0 2x2 MIMO 송신기 개요 2.2 2x2 MIMO 역다중화기 2.3 2x2 MIMO 프리코더 2.4 SISO 파일럿 삽입 2.5 2x2 MIMO 파일럿 삽입 3. ATSC 3.0 2x2 MIMO 수신기 3.1 ATSC 3.0 2x2 MIMO 수신기 개요 3.2 2x2 MIMO 채널 3.3 2x2 MIMO 채널 추정 3.4 LLR 계산 4. 전산 실험 결과 5. 결론Maste

    An Iterative Detection Algorithm of Bootstrap Signals for ATSC 3.0 System

    Get PDF
    본 학위논문에서는 ATSC 3.0 시스템을 위한 부트스트랩 신호의 반복 검출 알고리즘을 제안한다. 부트스트랩 신호에 포함된 시그널링 정보를 검출하기 위한 최대우도 결정 규칙을 유도하였고, 검출 성능을 향상시키기 위한 반복 검출 알고리즘을 제안한다. 제안하는 검출 알고리즘은 연속하는 이전 두 개의 부트스트랩 심볼에 대한 채널 추정 값들을 반복적으로 평균한다. 또한, 본 학위논문에서는 제안하는 검출 알고리즘의 수신기 복잡도를 분석하였다. 전산 실험 결과는 기존 방법과 비교했을 때 프레임 오율이 인 경우 약 2 dB의 신호 대 잡음비 이득을 얻을 수 있음을 보여준다. 또한, 검출 성능과 복잡도를 고려한 최적의 반복 횟수를 제시하였다.|In this thesis, an iterative detection algorithm of bootstrap signals for ATSC 3.0 system is proposed. A maximum-likelihood decision rule to detect the signaling information included in the bootstrap signals is derived and the iterative detection algorithm to improve the detection performance is described. The proposed detection algorithm iteratively averages the channel estimates for the two consecutive symbols. Furthermore, this thesis analyzes the computational complexity of the proposed detection algorithm. The simulation results show that the proposed detection algorithm can obtain the signal-to-noise ratio gain of approximately 2.0 dB at frame error rate of compared to the conventional detection scheme. Also, this thesis presents the sufficient number of iterations to provide a good performance-complexity trade-off.1. 서 론 1 2. ATSC 3.0 및 부트스트랩 신호의 구조 3 2.1 ATSC 3.0 개요 3 2.2 부트스트랩 신호의 구조 5 2.2.1 부트스트랩 신호 생성 5 2.2.2 부트스트랩 신호의 순환 이동 11 2.2.3 부트스트랩 신호의 시간 영역 구조 14 2.2.4 부트스트랩 신호의 시그널링 구조 15 3. 부트스트랩 검출기 19 3.1 부트스트랩 수신기 19 3.2 부트스트랩 신호 검출을 위한 최대우도 결정 규칙 20 4. 부트스트랩 검출을 위한 제안하는 반복 검출 알고리즘 24 4.1 채널 추정 24 4.2 순방향 검출 24 4.3 역방향 검출을 위한 최대우도 결정 규칙 27 4.4 반복 검출 29 5. 복잡도 분석 33 6. 전산 실험 결과 35 7. 결론 52 참고문헌 53 감사의 글 57Maste

    High mobility in OFDM based wireless communication systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has been adopted as the transmission scheme in most of the wireless systems we use on a daily basis. It brings with it several inherent advantages that make it an ideal waveform candidate in the physical layer. However, OFDM based wireless systems are severely affected in High Mobility scenarios. In this thesis, we investigate the effects of mobility on OFDM based wireless systems and develop novel techniques to estimate the channel and compensate its effects at the receiver. Compressed Sensing (CS) based channel estimation techniques like the Rake Matching Pursuit (RMP) and the Gradient Rake Matching Pursuit (GRMP) are developed to estimate the channel in a precise, robust and computationally efficient manner. In addition to this, a Cognitive Framework that can detect the mobility in the channel and configure an optimal estimation scheme is also developed and tested. The Cognitive Framework ensures a computationally optimal channel estimation scheme in all channel conditions. We also demonstrate that the proposed schemes can be adapted to other wireless standards easily. Accordingly, evaluation is done for three current broadcast, broadband and cellular standards. The results show the clear benefit of the proposed schemes in enabling high mobility in OFDM based wireless communication systems.Orthogonal Frequency Division Multiplexing (OFDM) wurde als Übertragungsschema in die meisten drahtlosen Systemen, die wir täglich verwenden, übernommen. Es bringt mehrere inhärente Vorteile mit sich, die es zu einem idealen Waveform-Kandidaten in der Bitübertragungsschicht (Physical Layer) machen. Allerdings sind OFDM-basierte drahtlose Systeme in Szenarien mit hoher Mobilität stark beeinträchtigt. In dieser Arbeit untersuchen wir die Auswirkungen der Mobilität auf OFDM-basierte drahtlose Systeme und entwickeln neuartige Techniken, um das Verhalten des Kanals abzuschätzen und seine Auswirkungen am Empfänger zu kompensieren. Auf Compressed Sensing (CS) basierende Kanalschätzverfahren wie das Rake Matching Pursuit (RMP) und das Gradient Rake Matching Pursuit (GRMP) werden entwickelt, um den Kanal präzise, robust und rechnerisch effizient abzuschätzen. Darüber hinaus wird ein Cognitive Framework entwickelt und getestet, das die Mobilität im Kanal erkennt und ein optimales Schätzungsschema konfiguriert. Das Cognitive Framework gewährleistet ein rechnerisch optimales Kanalschätzungsschema für alle möglichen Kanalbedingungen. Wir zeigen außerdem, dass die vorgeschlagenen Schemata auch leicht an andere Funkstandards angepasst werden können. Dementsprechend wird eine Evaluierung für drei aktuelle Rundfunk-, Breitband- und Mobilfunkstandards durchgeführt. Die Ergebnisse zeigen den klaren Vorteil der vorgeschlagenen Schemata bei der Ermöglichung hoher Mobilität in OFDM-basierten drahtlosen Kommunikationssystemen

    Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast

    Full text link
    Tesis por compendioDesde comienzos del siglo XXI, los sistemas de radiodifusión terrestre han sido culpados de un uso ineficiente del espectro asignado. Para aumentar la eficiencia espectral, los organismos de estandarización de TV digital comenzaron a desarrollar la evolución técnica de los sistemas de TDT de primera generación. Entre otros, uno de los objetivos principales de los sistemas de TDT de próxima generación (DVB-T2 y ATSC 3.0) es proporcionar simultáneamente servicios de TV a dispositivos móviles y fijos. El principal inconveniente de esta entrega simultánea son los diferentes requisitos de cada condición de recepción. Para abordar estas limitaciones, se han considerado diferentes técnicas de multiplexación. Mientras que DVB-T2 acomete la entrega simultánea de los dos servicios mediante TDM, ATSC 3.0 adoptó la Multiplexación por División en Capas (LDM). LDM puede superar a TDM y a FDM al aprovechar la relación de Protección de Error Desigual (UEP), ya que ambos servicios, llamados capas, utilizan todos los recursos de frecuencia y tiempo con diferentes niveles de potencia. En el lado del receptor, se distinguen dos implementaciones, de acuerdo con la capa a decodificar. Los receptores móviles solo están destinados a obtener la capa superior, conocida como Core Layer (CL). Para no aumentar su complejidad en comparación con los receptores de capa única, la capa inferior, conocida como Enhanced Layer (EL), es tratada como un ruido adicional en la decodificación. Los receptores fijos aumentan su complejidad, ya que deben realizar un proceso de Cancelación de Interferencia (SIC) sobre la CL para obtener la EL. Para limitar la complejidad adicional de los receptores fijos, las capas de LDM en ATSC 3.0 están configuradas con diferentes capacidades de corrección, pero comparten el resto de bloques de la capa física, incluido el TIL, el PP, el tamaño de FFT, y el GI. Esta disertación investiga tecnologías avanzadas para optimizar el rendimiento de LDM. Primero se propone una optimización del proceso de demapeo para las dos capas de LDM. El algoritmo propuesto logra un aumento de capacidad, al tener en cuenta la forma de la EL en el proceso de demapeo de la CL. Sin embargo, el número de distancias Euclidianas a computar puede aumentar significativamente, conduciendo no solo a receptores fijos más complejos, sino también a receptores móviles más complejos. A continuación, se determina la configuración de piloto ATSC 3.0 más adecuada para LDM. Teniendo en cuenta que las dos capas comparten el mismo PP, surge una contrapartida entre la densidad de pilotos (CL) y la redundancia sobre los datos (EL). A partir de los resultados de rendimiento, se recomienda el uso de un PP no muy denso, ya que ya han sido diseñados para hacer frente a ecos largos y altas velocidades. La amplitud piloto óptima depende del estimador de canal en los receptores (ej., se recomienda la amplitud mínima para una implementación Wiener, mientras que la máxima para una implementación FFT). También se investiga la potencial transmisión conjunta de LDM con tres tecnologías avanzadas adoptadas en ATSC 3.0: las tecnologías de agregación MultiRF, los esquemas de MISO distribuido y los de MIMO colocalizado. Se estudian los potenciales casos de uso, los aspectos de implementación del transmisor y el receptor, y las ganancias de rendimiento de las configuraciones conjuntas para las dos capas de LDM. Las restricciones adicionales de combinar LDM con las tecnologías avanzadas se consideran admisibles, ya que las mayores demandas ya están contempladas en ATSC 3.0 (ej., una segunda cadena de recepción). Se obtienen ganancias significativas en condiciones de recepción peatonal gracias a la diversidad en frecuencia proporcionada por las tecnologías MultiRF. La conjunción de LDM con esquemas de MISO proporciona ganancias de rendimiento significativas en redes SFN para la capa fija con el esquema de Alamouti.Since the beginning of the 21st century, terrestrial broadcasting systems have been blamed of an inefficient use of the allocated spectrum. To increase the spectral efficiency, digital television Standards Developing Organizations settled to develop the technical evolution of the first-generation DTT systems. Among others, a primary goal of next-generation DTT systems (DVB-T2 and ATSC 3.0) is to simultaneously provide TV services to mobile and fixed devices. The major drawback of this simultaneous delivery is the different requirement of each reception condition. To address these constraints different multiplexing techniques have been considered. While DVB-T2 fulfilled the simultaneous delivery of the two services by TDM, ATSC 3.0 adopted the LDM technology. LDM can outperform TDM and FDM by taking advantage of the UEP ratio, as both services, namely layers, utilize all the frequency and time resources with different power levels. At receiver side, two implementations are distinguished, according to the intended layer. Mobile receivers are only intended to obtain the upper layer, known as CL. In order not to increase their complexity compared to single layer receivers, the lower layer, known as EL is treated as an additional noise on the CL decoding. Fixed receivers, increase their complexity, as they should performed a SIC process on the CL for getting the EL. To limit the additional complexity of fixed receivers, the LDM layers in ATSC 3.0 are configured with different error correction capabilities, but share the rest of physical layer parameters, including the TIL, the PP, the FFT size, and the GI. This dissertation investigates advanced technologies to optimize the LDM performance. A demapping optimization for the two LDM layers is first proposed. A capacity increase is achieved by the proposed algorithm, which takes into account the underlying layer shape in the demapping process. Nevertheless, the number of Euclidean distances to be computed can be significantly increased, contributing to not only more complex fixed receivers, but also more complex mobile receivers. Next, the most suitable ATSC 3.0 pilot configuration for LDM is determined. Considering the two layers share the same PP a trade-off between pilot density (CL) and data overhead (EL) arises. From the performance results, it is recommended the use of a not very dense PP, as they have been already designed to cope with long echoes and high speeds. The optimum pilot amplitude depends on the channel estimator at receivers (e.g. the minimum amplitude is recommended for a Wiener implementation, while the maximum for a FFT implementation). The potential combination of LDM with three advanced technologies that have been adopted in ATSC 3.0 is also investigated: MultiRF technologies, distributed MISO schemes, and co-located MIMO schemes. The potential use cases, the transmitter and receiver implementations, and the performance gains of the joint configurations are studied for the two LDM layers. The additional constraints of combining LDM with the advanced technologies is considered admissible, as the greatest demands (e.g. a second receiving chain) are already contemplated in ATSC 3.0. Significant gains are found for the mobile layer at pedestrian reception conditions thanks to the frequency diversity provided by MultiRF technologies. The conjunction of LDM with distributed MISO schemes provides significant performance gains on SFNs for the fixed layer with Alamouti scheme. Last, considering the complexity in the mobile receivers and the CL performance, the recommended joint configuration is MISO in the CL and MIMO in the EL.Des de començaments del segle XXI, els sistemes de radiodifusió terrestre han sigut culpats d'un ús ineficient de l'espectre assignat. Per a augmentar l'eficiència espectral, els organismes d'estandardització de TV digital van començar a desenvolupar l'evolució tècnica dels sistemes de TDT de primera generació. Entre altres, un dels objectius principals dels sistemes de TDT de pròxima generació (DVB-T2 i el ATSC 3.0) és proporcionar simultàniament serveis de TV a dispositius mòbils i fixos. El principal inconvenient d'aquest lliurament simultani són els diferents requisits de cada condició de recepció. Per a abordar aquestes limitacions, s'han considerat diferents tècniques de multiplexació. Mentre que DVB-T2 escomet el lliurament simultani dels dos serveis mitjançant TDM, ATSC 3.0 va adoptar la Multiplexació per Divisió en Capes (LDM). LDM pot superar a TDM i a FDM en aprofitar la relació de Protecció d'Error Desigual (UEP), ja que tots dos serveis, cridats capes, utilitzen tots els recursos de freqüència i temps amb diferents nivells de potència. En el costat del receptor, es distingeixen dues implementacions, d'acord amb la capa a decodificar. Els receptors mòbils solament estan destinats a obtenir la capa superior, coneguda com Core Layer (CL). Per a no augmentar la seua complexitat en comparació amb els receptors de capa única, la capa inferior, coneguda com Enhanced Layer (EL), és tractada com un soroll addicional en la decodificació. Els receptors fixos augmenten la seua complexitat, ja que han de realitzar un procés de Cancel·lació d'Interferència (SIC) sobre la CL per a obtenir l'EL. Per a limitar la complexitat addicional dels receptors fixos, les capes de LDM en ATSC 3.0 estan configurades amb diferents capacitats de correcció, però comparteixen la resta de blocs de la capa física, inclòs el TIL, el PP, la grandària de FFT i el GI. Aquesta dissertació investiga tecnologies avançades per a optimitzar el rendiment de LDM. Primer es proposa una optimització del procés de demapeo per a les dues capes de LDM. L'algoritme proposat aconsegueix un augment de capacitat, en tenir en compte la forma de l'EL en el procés de demapeo de la CL. No obstant açò, el nombre de distàncies Euclidianes a computar pot augmentar significativament, conduint NO sols a receptors fixos més complexos, sinó també a receptors mòbils més complexos. A continuació, es determina la configuració de pilot ATSC 3.0 més adequada per a LDM. Tenint en compte que les dues capes comparteixen el mateix PP, es produeix una contrapartida entre la densitat de pilots (CL) i la redundància sobre les dades (EL). A partir dels resultats de rendiment, es recomana l'ús d'un PP no gaire dens, ja que ja han sigut dissenyats per a fer front a ecos llargs i altes velocitats. L'amplitud pilot òptima depèn de l'estimador de canal en els receptors (ex., es recomana l'amplitud mínima per a una implementació Wiener, mentre que la màxima per a una implementació FFT). També s'investiga la potencial transmissió conjunta de LDM amb tres tecnologies avançades adoptades en ATSC 3.0: les tecnologies d'agregació de MultiRF, els esquemes de MISO distribuït i els de MIMO colocalitzat. S'estudien els potencials casos d'ús, els principals aspectes d'implementació del transmissor i el receptor, i els guanys de rendiment de les configuracions conjuntes per a les dues capes de LDM. Les restriccions addicionals de combinar LDM amb les tecnologies avançades es consideren admissibles, ja que les majors demandes ja estan contemplades en ATSC 3.0 (ex., una segona cadena de recepció). S'obtenen guanys significatius per a la capa mòbil en condicions de recepció per als vianants gràcies a la diversitat en freqüència proporcionada per les tecnologies MultiRF. La conjunció de LDM amb esquemes MISO distribuïts proporciona guanys de rendiment significatius en xarxes SFN per a la capa fixa amb l'esquema d'Alamouti.Garro Crevillén, E. (2018). Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/105559TESISCompendi
    corecore