842 research outputs found

    Scallop hull and its offset

    Full text link
    A linear-time algorithm that computes the envelope of the offset of a monotone chain is presented. The scallop hull, an extended notion of the convex hull, of the monotone chain is first computed by using an approach similar to that of the convex-hull construction algorithm. The offset of the scallop hull, which yields the desired envelope, can then be computed in linear time from the scallop hull, giving a tool path.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31482/1/0000404.pd

    Constant scallop height tool path generation

    Get PDF
    Journal ArticleAn approach for the automatic generation of constant scallop height tool paths is presented. An example is shown generated from a B-spline model, although it can be used with many types of sculptured surfaces. The approach utilizes surface subdivision techniques and a new algorithm for tool path generation. The new algorithm is based on computer graphics shading algorithms and on methods from graph theory. A tool path with a constant scallop height renders minimum waste tool moves and hence results in much better machine time. Since neither numerical methods nor high order derivatives are required by the algorithm, it provides an efficient and robust method for tool path computation. Besides, the new algorithm is capable of producing tool paths whose milling directions are based on local surface geometry

    A BIOECONOMIC ANALYSIS OF THE IMPACT OF DECOMMISSIONING PROGRAMS: APPLICATION TO A LIMITED-ENTRY FRENCH SCALLOP FISHERY

    Get PDF
    The objective of this paper is to assess the benefits and costs of decommissioning policies aimed at reducing fleet capacity through premiums offered by the public authority to fishermen to scrap their vessels. A case study, the limited entry scallop fishery of the Saint Brieuc Bay, France, is used to consider the problem of excess capacity and to model the bioeconomic consequences of disinvestment behavior. Special attention is paid to the assessment of fishermen's willingness to leave the fishery and to the implementation of public policy in terms of budget level and premiums offered to the fishermen. Spreadsheet simulations show that the impact of decommissioning programs is positive in terms of net surplus, even in the case of increasing technical efficiency of the vessels.Resource /Energy Economics and Policy,

    Improving confidence in the management of the blue swimmer crab (Portunus armatus) in Shark Bay PART II: Socio-economic significance of commercial Blue Swimmer crabs in Shark Bay. FRDC project no. 2012/15

    Get PDF
    The Shark Bay crab fishery is faced with substantial changes. The fishery reopened in late 2013 after a 18 month closure due to a significant stock decline from adverse environmental conditions. The stock is now recovering and The Department of Fisheries Western Australia (DFWA) has implemented substantial management changes including the introduction of catch quotas to limit the catches of individual fishing businesses and a Total Allowable Commercial Catch (TACC) for the fishery. Fishers are challenged with adapting to the changes in management and inter-annual variability in crab catch volume linked to environmental conditions

    Automated Digital Machining for Parallel Processors

    Get PDF
    When a process engineer creates a tool path a number of fixed decisions are made that inevitably produce sub-optimal results. This is because it is impossible to process all of the tradeoffs before generating the tool path. The research presents a methodology to support a process engineers attempt to generate optimal tool paths by performing automated digital machining and analysis. This methodology automatically generates and evaluates tool paths based on parallel processing of digital part models and generalized cutting geometry. Digital part models are created by voxelizing STL files and the resulting digital part surfaces are obtained based on casting rays into the part model. Tool paths are generated based on a general path template and updated based on generalized tool geometry and part surface information. The material removed by the generalized cutter as it follows the path is used to obtain path metrics. The paths are evaluated based on the path metrics of material removal rate, machining time, and amount of scallop. This methodology is a parallel processing accelerated framework suitable for generating tool paths in parallel enabling the process engineer to rank and select the best tool path for the job

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    오프셋 곡선 및 곡면의 자가 교차 검출 및 제거

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 컴퓨터공학부,2020. 2. 김명수.Offset curves and surfaces have many applications in computer-aided design and manufacturing, but the self-intersections and redundancies must be trimmed away for their practical use. We present a new method for offset curve and surface trimming that detects the self-intersections and eliminates the redundant parts of an offset curve and surface that are closer than the offset distance to the original curve and surface. We first propose an offset trimming method based on constructing geometric constraint equations. We formulate the constraint equations of the self-intersections of an offset curve and surface in the parameter domain of the original curve and surface. Numerical computations based on the regularity and intrinsic properties of the given input curve and surface is carried out to compute the solution of the constraint equations. The method deals with numerical instability around near-singular regions of an offset surface by using osculating tori that can be constructed in a highly stable way, i.e., by offsetting the osculating torii of the given input regular surface. We reveal the branching structure and the terminal points from the complete self-intersection curves of the offset surface. From the observation that the trimming method based on the multivariate equation solving is computationally expensive, we also propose an acceleration technique to trim an offset curve and surface. The alternative method constructs a bounding volume hierarchy specially designed to enclose the offset curve and surface and detects the self-collision of the bounding volumes instead. In the case of an offset surface, the thickness of the bounding volumes is indirectly determined based on the maximum deviations of the positions and the normals between the given input surface patches and their osculating tori. For further acceleration, the bounding volumes are pruned as much as possible during self-collision detection using various geometric constraints imposed on the offset surface. We demonstrate the effectiveness of the new trimming method using several non-trivial test examples of offset trimming. Lastly, we investigate the problem of computing the Voronoi diagram of a freeform surface using the offset trimming technique for surfaces. By trimming the offset surface with a gradually changing offset radius, we compute the boundary of the Voronoi cells that appear in the concave side of the given input surface. In particular, we interpret the singular and branching points of the self-intersection curves of the trimmed offset surfaces in terms of the boundary elements of the Voronoi diagram.오프셋 곡선 및 곡면은 computer-aided design (CAD)와 computer-aided manufacturing (CAM)에서 널리 이용되는 연산들 중 하나이다. 하지만 실용적인 활용을 위해서는 오프셋 곡선 및 곡면에서 생기는 자가 교차를 찾고 이를 기준으로 오프셋 곡선 및 곡면에서 원래의 곡선 및 곡면에 가까운 불필요한 영역을 제거하여야한다. 본 논문에서는 오프셋 곡선 및 곡면에서 생기는 자가 교차를 계산하고, 오프셋 곡선 및 곡면에서 생기는 불필요한 영역을 제거하는 알고리즘을 제안한다. 본 논문은 우선 오프셋 곡선 및 곡면의 자가 교차점들과 그 교차점들이 기인한 원래 곡선 및 곡면의 점들이 이루는 평면 이등변 삼각형 관계로부터 오프셋 곡선 및 곡면의 자가 교차점의 제약 조건을 만족시키는 방정식들을 세운다. 이 제약식들은 원래 곡선 및 곡면의 변수 공간에서 표현되며, 이 방정식들의 해는 다변수 방정식의 해를 구하는 solver를 이용하여 구한다. 오프셋 곡면의 경우, 원래 곡면의 주곡률 중 하나가 오프셋 반지름의 역수와 같을 때 오프셋 곡면의 법선이 정의가 되지 않는 특이점이 생기는데, 오프셋 곡면의 자가 교차 곡선이 이 부근을 지날 때는 자가 교차 곡선의 계산이 불안정해진다. 따라서 자가 교차 곡선이 오프셋 곡면의 특이점 부근을 지날 때는 오프셋 곡면을 접촉 토러스로 치환하여 더 안정된 방법으로 자가 교차 곡선을 구한다. 계산된 오프셋 곡면의 자가 교차 곡선으로부터 교차 곡선의 xyzxyz-공간에서의 말단 점, 가지 구조 등을 밝힌다. 본 논문은 또한 바운딩 볼륨 기반의 오프셋 곡선 및 곡면의 자가 교차 곡선 검출을 가속화하는 방법을 제시한다. 바운딩 볼륨은 기저 곡선 및 곡면을 단순한 기하로 감싸고 기하 연산을 수행함으로써 가속화에 기여한다. 오프셋 곡면의 자가 교차 곡선을 구하기 위하여, 본 논문은 오프셋 곡면의 바운딩 볼륨 구조를 기저 곡면의 바운딩 볼륨과 기저 곡면의 법선 곡면의 바운딩 볼륨의 구조로부터 계산하며 이때 각 바운딩 볼륨의 두께를 계산한다. 또한, 바운딩 볼륨 중에서 실제 오프셋 곡선 및 곡면의 자가 교차에 기여하지 않는 부분을 깊은 재귀 전에 찾아서 제거하는 여러 조건들을 나열한다. 한편, 자가 교차가 제거된 오프셋 곡선 및 곡면은 기저 곡선 및 곡면의 보로노이 구조와 깊은 관련이 있는 것이 알려져 있다. 본 논문에서는 자유 곡면의 연속된 오프셋 곡면들로부터 자유 곡면의 보로노이 구조를 유추하는 방법을 제시한다. 특히, 오프셋 곡면의 자가 교차 곡선 상에서 나타나는 가지 점이나 말단 점과 같은 특이점들이 자유 곡면의 보로노이 구조에서 어떻게 해석되는지 제시한다.1. Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives and Approach 7 1.3 Contributions and Thesis Organization 11 2. Preliminaries 14 2.1 Curve and Surface Representation 14 2.1.1 Bezier Representation 14 2.1.2 B-spline Representation 17 2.2 Differential Geometry of Curves and Surfaces 19 2.2.1 Differential Geometry of Curves 19 2.2.2 Differential Geometry of Surfaces 21 3. Previous Work 23 3.1 Offset Curves 24 3.2 Offset Surfaces 27 3.3 Offset Curves on Surfaces 29 4. Trimming Offset Curve Self-intersections 32 4.1 Experimental Results 35 5. Trimming Offset Surface Self-intersections 38 5.1 Constraint Equations for Offset Self-Intersections 38 5.1.1 Coplanarity Constraint 39 5.1.2 Equi-angle Constraint 40 5.2 Removing Trivial Solutions 40 5.3 Removing Normal Flips 41 5.4 Multivariate Solver for Constraints 43 5.A Derivation of f(u,v) 46 5.B Relationship between f(u,v) and Curvatures 47 5.3 Trimming Offset Surfaces 50 5.4 Experimental Results 53 5.5 Summary 57 6. Acceleration of trimming offset curves and surfaces 62 6.1 Motivation 62 6.2 Basic Approach 67 6.3 Trimming an Offset Curve using the BVH 70 6.4 Trimming an Offset Surface using the BVH 75 6.4.1 Offset Surface BVH 75 6.4.2 Finding Self-intersections in Offset Surface Using BVH 87 6.4.3 Tracing Self-intersection Curves 98 6.5 Experimental Results 100 6.6 Summary 106 7. Application of Trimming Offset Surfaces: 3D Voronoi Diagram 107 7.1 Background 107 7.2 Approach 110 7.3 Experimental Results 112 7.4 Summary 114 8. Conclusion 119 Bibliography iDocto

    Advanced Process Planning for Subtractive Rapid Prototyping

    Get PDF
    This paper presents process planning methods for Subtractive Rapid Prototyping, which deals with multiple setup operations and the related issues of stock material management. Subtractive Rapid Prototyping (SRP) borrows from additive rapid prototyping technologies by using 2½D layer based toolpath processing; however, it is limited by tool accessibility. To counter the accessibility problem, SRP systems (such as desktop milling machines) employ a rotary fourth axis to provide more complete surface coverage. However, layer-based removal processing from different rotary positions can be inefficient due to double-coverage of certain volumes. This paper presents a method that employs STL models of the in-process stock material generated from slices of the part along the rotation axis. The developed algorithms intend to improve the efficiency and reliability of these multiple layer-based removal steps for rapid manufacturing.Mechanical Engineerin

    Stock predictions and population indicators for Australia's east coast saucer scallop fishery

    Get PDF
    This project undertook analyses to understand the roles of overfishing and the environment on saucer scallops. Results of this study indicated a decline in numbers of spawning scallops. High levels of fishing effort since the 1980s contributed to stock depletion. In addition, environmental influences such as increased sea surface temperatures (SST) may have amplified scallop mortality rates. These findings can be applied to efforts for stock rehabilitation for the scallop fishery between Yeppoon and K’gari (Fraser Island). Recommended management actions include reduction of the spatial intensity of fishing effort applied, and ensuring sufficient annual spawning to support the scallop population and fishery
    corecore