3,528 research outputs found

    Session 5: Development, Neuroscience and Evolutionary Psychology

    Get PDF
    Proceedings of the Pittsburgh Workshop in History and Philosophy of Biology, Center for Philosophy of Science, University of Pittsburgh, March 23-24 2001 Session 5: Development, Neuroscience and Evolutionary Psycholog

    Modular Networks: Learning to Decompose Neural Computation

    Get PDF
    Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.Comment: NIPS 201

    Evolution of Neural Networks for Helicopter Control: Why Modularity Matters

    Get PDF
    The problem of the automatic development of controllers for vehicles for which the exact characteristics are not known is considered in the context of miniature helicopter flocking. A methodology is proposed in which neural network based controllers are evolved in a simulation using a dynamic model qualitatively similar to the physical helicopter. Several network architectures and evolutionary sequences are investigated, and two approaches are found that can evolve very competitive controllers. The division of the neural network into modules and of the task into incremental steps seems to be a precondition for success, and we analyse why this might be so

    Guiding Neuroevolution with Structural Objectives

    Full text link
    The structure and performance of neural networks are intimately connected, and by use of evolutionary algorithms, neural network structures optimally adapted to a given task can be explored. Guiding such neuroevolution with additional objectives related to network structure has been shown to improve performance in some cases, especially when modular neural networks are beneficial. However, apart from objectives aiming to make networks more modular, such structural objectives have not been widely explored. We propose two new structural objectives and test their ability to guide evolving neural networks on two problems which can benefit from decomposition into subtasks. The first structural objective guides evolution to align neural networks with a user-recommended decomposition pattern. Intuitively, this should be a powerful guiding target for problems where human users can easily identify a structure. The second structural objective guides evolution towards a population with a high diversity in decomposition patterns. This results in exploration of many different ways to decompose a problem, allowing evolution to find good decompositions faster. Tests on our target problems reveal that both methods perform well on a problem with a very clear and decomposable structure. However, on a problem where the optimal decomposition is less obvious, the structural diversity objective is found to outcompete other structural objectives -- and this technique can even increase performance on problems without any decomposable structure at all
    corecore