229 research outputs found

    OASIS - Identifying the Core Attributes for RDBMS Alternatives

    Get PDF
    Since their introduction in the 1970s, relational database management systems have served as the dominate data storage technology. However, the demands of big data and Web 2.0 necessitated a change in the market, sparking the beginning of the NoSQL movement in the late 2000s. NoSQL databases exchanged the relational model and the guaranteed consistency of ACID transactions for improved performance and massive scalability [1]. While the benefits NoSQL provided proved useful, the lack of sufficient SQL functionality presented a major hurdle for organizations which require it to properly operate. It was clear that new RDBMS solutions which did not compromise functionality or scalability were necessary, which has led to the rise of a new class of modern relational database management systems, NewSQL [2]. This paper seeks to identify a consistent set of requirements necessary for an ideal RDBMS substitute. Among these requirements include possessing the features of a modern RDBMS, which includes support of the relational data model and standard ANSI SQL, ACID transactions, and ODBC/JDBC drivers. Additionally, the substitute must address typical RDBMS’ shortcomings in scalability by providing cost-effective scale-out capabilities. These requirements will then be used to filter out existing NoSQL and NewSQL database systems which could serve as viable substitutes to a typical RDBMS

    High Performance Transaction Processing on Non-Uniform Hardware Topologies

    Get PDF
    Transaction processing is a mission critical enterprise application that runs on high-end servers. Traditionally, transaction processing systems have been designed for uniform core-to-core communication latencies. In the past decade, with the emergence of multisocket multicores, for the first time we have Islands, i.e., groups of cores that communicate fast among themselves and slower with other groups. In current mainstream servers, each multicore processor corresponds to an Island. As the number of cores on a chip increases, however, we expect that multiple Islands will form within a single processor in the nearby future. In addition, the access latencies to the local memory and to the memory of another server over fast interconnect are converging, thus creating a hierarchy of Islands within a group of servers. Non-uniform hardware topologies pose a significant challenge to the scalability and the predictability of performance of transaction processing systems. Distributed transaction processing systems can alleviate this problem; however, no single deployment configuration is optimal for all workloads and hardware topologies. In order to fully utilize the available processing power, a transaction processing system needs to adapt to the underlying hardware topology and tune its configuration to the current workload. More specifically, the system should be able to detect any changes to the workload and hardware topology, and adapt accordingly without disrupting the processing. In this thesis, we first systematically quantify the impact of hardware Islands on deployment configurations of distributed transaction processing systems. We show that none of these configurations is optimal for all workloads, and the choice of the optimal configuration depends on the combination of the workload and hardware topology. In the cluster setting, on the other hand, the choice of optimal configuration additionally depends on the properties of the communication channel between the servers. We address this challenge by designing a dynamic shared-everything system that adapts its data structures automatically to hardware Islands. To ensure good performance in the presence of shifting workload patterns, we use a lightweight partitioning and placement mechanism to balance the load and minimize the synchronization overheads across Islands. Overall, we show that masking the non-uniformity of inter-core communication is critical for achieving predictably high performance for latency-sensitive applications, such as transaction processing. With clusters of a handful of multicore chips with large main memories replacing high-end many-socket servers, the deployment rules of thumb identified in our analysis have a potential to significantly reduce the synchronization and communication costs of transaction processing. As workloads become more dynamic and diverse, while still running on partitioned infrastructure, the lightweight monitoring and adaptive repartitioning mechanisms proposed in this thesis will be applicable to a wide range of designs for which traditional offline schemes are impractical

    The VINEYARD Approach: Versatile, Integrated, Accelerator-Based, Heterogeneous Data Centres.

    Get PDF
    Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application

    Transactions Chasing Scalability and Instruction Locality on Multicores

    Get PDF
    For several decades, online transaction processing (OLTP) has been one of the main server applications that drives innovations in the data management ecosystem, and in turn the database and computer architecture communities. Recent hardware trends oblige software to overcome two major challenges against systems scalability on modern multicore processors: (1) exploiting the abundant thread-level parallelism across cores and (2) taking advantage of the implicit parallelism within a core. The traditional design of the OLTP systems, however, faces inherent scalability problems due to its tightly coupled components. In addition, OLTP cannot exploit the full capability of the micro-architectural resources of modern processors because of the conventional scheduling decisions that ignore the cache locality for transactions. As a result, today’s commonly used server hardware remains largely underutilized leading to a huge waste of hardware resources and energy. .... In this thesis, we first identify the unbounded critical sections of traditional OLTP systems as the main enemy of thread-level parallelism. We design an alternative shared-everything system based on physiological partitioning (PLP) to eliminate the unbounded critical sections while providing an infrastructure for low-cost dynamic repartitioning and without introducing high-cost distributed transactions. Then, we demonstrate that L1 instruction cache stalls are the dominant factor leading to underutilization in the commodity servers. However, we also observe that independently of their high-level functionality, transactions running in parallel on a multicore system share significant amount of common instructions. By adaptively spreading the execution of a transaction over multiple cores through thread migration or multiplexing transactions on one core, we enable both an ample L1 instruction cache capacity for a transaction and reuse of common instructions across concurrent transactions. .... As the hardware demands more from the software to exploit the complexity and parallelism it offers in the multicore era, this work would change the way we traditionally schedule transactions. Instead of viewing a transaction as a single big task, we split it into smaller parts that can exploit data and instruction locality through careful dynamic scheduling decisions. The methods this thesis presents are not only specific to OLTP systems, but they can also benefit other types of applications that have concurrent requests executing a series of actions from a predefined set and face similar scalability problems on emerging hardware
    • …
    corecore