6 research outputs found

    Scaling behaviour and critical phase transitions in integrated information theory

    Get PDF
    Integrated Information Theory proposes a measure of conscious activity (Phi), characterised as the irreducibility of a dynamical system to the sum of its components. Due to its computational cost, current versions of the theory (IIT 3.0) are difficult to apply to systems larger than a dozen units, and, in general, it is not well known how integrated information scales as systems grow larger in size. In this article, we propose to study the scaling behaviour of integrated information in a simple model of a critical phase transition: an infinite-range kinetic Ising model. In this model, we assume a homogeneous distribution of couplings to simplify the computation of integrated information. This simplified model allows us to critically review some of the design assumptions behind the measure and connect its properties with well-known phenomena in phase transitions in statistical mechanics. As a result, we point to some aspects of the mathematical definitions of IIT that 3.0 fail to capture critical phase transitions and propose a reformulation of the assumptions made by integrated information measures

    The emergence of integrated information, complexity, and \u27consciousness\u27 at criticality

    Get PDF
    © 2020 by the authors. Integrated Information Theory (IIT) posits that integrated information (F) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate F as a function of temperature in toy models of fully connected neural networks. A Monte-Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that F can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model

    Critical integration in neural and cognitive systems: beyond power-law scaling as the hallmark of soft assembly

    Get PDF
    Inspired by models of self-organized criticality, a family of measures quantifies long-range correlations in neural and behavioral activity in the form of self-similar (e.g., power-law scaled) patterns across a range of scales. Long-range correlations are often taken as evidence that a system is near a critical transition, suggesting interaction-dominant, softly assembled relations between its parts. Psychologists and neuroscientists frequently use power-law scaling as evidence of critical regimes and soft assembly in neural and cognitive activity. Critics, however, argue that this methodology operates at most at the level of an analogy between cognitive and other natural phenomena. This is because power-laws do not provide information about a particular system's organization or what makes it specifically cognitive. We respond to this criticism using recent work in Integrated Information Theory. We propose a more principled understanding of criticality as a system's susceptibility to changes in its own integration, a property cognitive agents are expected to manifest. We contrast critical integration with power-law measures and find the former more informative about the underlying processes

    Self-organized criticality as a framework for consciousness: A review study

    Get PDF
    Objective: No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods: A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results: A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion: Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings

    Scaling Behaviour and Critical Phase Transitions in Integrated Information Theory

    No full text
    Integrated Information Theory proposes a measure of conscious activity ( Φ ), characterised as the irreducibility of a dynamical system to the sum of its components. Due to its computational cost, current versions of the theory (IIT 3.0) are difficult to apply to systems larger than a dozen units, and, in general, it is not well known how integrated information scales as systems grow larger in size. In this article, we propose to study the scaling behaviour of integrated information in a simple model of a critical phase transition: an infinite-range kinetic Ising model. In this model, we assume a homogeneous distribution of couplings to simplify the computation of integrated information. This simplified model allows us to critically review some of the design assumptions behind the measure and connect its properties with well-known phenomena in phase transitions in statistical mechanics. As a result, we point to some aspects of the mathematical definitions of IIT that 3.0 fail to capture critical phase transitions and propose a reformulation of the assumptions made by integrated information measures
    corecore