1,819 research outputs found

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles

    Magnetotransport in Two Dimensional Electron Systems Under Microwave Excitation and in Highly Oriented Pyrolytic Graphite

    Get PDF
    This thesis consists of two parts. The first part considers the effect of microwave radiation on magnetotransport in high quality GaAs/AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron temperature was studied by investigating the amplitude of the Shubnikov de Haas (SdH) oscillations in a regime where the cyclotron frequency ωc\omega_{c} and the MW angular frequency ω\omega satisfy 2ω≤ωc≤3.5ω2\omega \leq \omega_{c} \leq 3.5\omega. The results indicate negligible electron heating under modest MW photoexcitation, in agreement with theoretical predictions. Next, the effect of the polarization direction of the linearly polarized MWs on the MW induced magnetoresistance oscillation amplitude was investigated. The results demonstrate the first indications of polarization dependence of MW induced magnetoresistance oscillations. In the second part, experiments on the magnetotransport of three dimensional highly oriented pyrolytic graphite (HOPG) reveal a non-zero Berry phase for HOPG. Furthermore, a novel phase relation between oscillatory magneto- and Hall- resistances was discovered from the studies of the HOPG specimen

    Indoor off-body wireless MIMO communication with dual polarized textile antennas

    Get PDF
    Off-body data communication for firefighters and other rescue workers is an important area of development. The communication with a moving person in an indoor environment can be very unreliable due to channel fading. In addition, when considering off-body communication by means of textile antennas, propagation is affected by shadowing caused by the human body. By transmitting and receiving signals using multipleinput, multiple-output antennas (MIMO communication) a large improvement in reliability of the wireless link is obtained. In this contribution, the performance of wireless data communication using quadrature phase shift keyed (QPSK) modulated data in the 2.45 GHz ISM-band is evaluated in the case of firefighters walking indoor and communicating by means of a compact dualpattern dual-polarization diversity textile patch antenna system integrated into their clothing. Simultaneous transmit diversity (at the firefighter) and receive diversity (at the base station) up to fourth order are achieved by means of orthogonal space-time codes, providing a maximum total diversity order of 16. The measurements confirm that MIMO techniques drastically improve the reliability of the wireless link. Measurements are compared for three test persons of significantly different sizes. For equal transmitted power levels, the bit error rates for the 2×2 and 4 × 4 links are much lower than for a system without diversity, with the 4 × 4 system clearly providing the best performance
    • …
    corecore