3,107 research outputs found

    Learning and Searching Methods for Robust, Real-Time Visual Odometry.

    Full text link
    Accurate position estimation provides a critical foundation for mobile robot perception and control. While well-studied, it remains difficult to provide timely, precise, and robust position estimates for applications that operate in uncontrolled environments, such as robotic exploration and autonomous driving. Continuous, high-rate egomotion estimation is possible using cameras and Visual Odometry (VO), which tracks the movement of sparse scene content known as image keypoints or features. However, high update rates, often 30~Hz or greater, leave little computation time per frame, while variability in scene content stresses robustness. Due to these challenges, implementing an accurate and robust visual odometry system remains difficult. This thesis investigates fundamental improvements throughout all stages of a visual odometry system, and has three primary contributions: The first contribution is a machine learning method for feature detector design. This method considers end-to-end motion estimation accuracy during learning. Consequently, accuracy and robustness are improved across multiple challenging datasets in comparison to state of the art alternatives. The second contribution is a proposed feature descriptor, TailoredBRIEF, that builds upon recent advances in the field in fast, low-memory descriptor extraction and matching. TailoredBRIEF is an in-situ descriptor learning method that improves feature matching accuracy by efficiently customizing descriptor structures on a per-feature basis. Further, a common asymmetry in vision system design between reference and query images is described and exploited, enabling approaches that would otherwise exceed runtime constraints. The final contribution is a new algorithm for visual motion estimation: Perspective Alignment Search~(PAS). Many vision systems depend on the unique appearance of features during matching, despite a large quantity of non-unique features in otherwise barren environments. A search-based method, PAS, is proposed to employ features that lack unique appearance through descriptorless matching. This method simplifies visual odometry pipelines, defining one method that subsumes feature matching, outlier rejection, and motion estimation. Throughout this work, evaluations of the proposed methods and systems are carried out on ground-truth datasets, often generated with custom experimental platforms in challenging environments. Particular focus is placed on preserving runtimes compatible with real-time operation, as is necessary for deployment in the field.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113365/1/chardson_1.pd

    Real-Time Multi-Fisheye Camera Self-Localization and Egomotion Estimation in Complex Indoor Environments

    Get PDF
    In this work a real-time capable multi-fisheye camera self-localization and egomotion estimation framework is developed. The thesis covers all aspects ranging from omnidirectional camera calibration to the development of a complete multi-fisheye camera SLAM system based on a generic multi-camera bundle adjustment method

    Learning Pose Invariant and Covariant Classifiers from Image Sequences

    Get PDF
    Object tracking and detection over a wide range of viewpoints is a long-standing problem in Computer Vision. Despite significant advance in wide-baseline sparse interest point matching and development of robust dense feature models, it remains a largely open problem. Moreover, abundance of low cost mobile platforms and novel application areas, such as real-time Augmented Reality, constantly push the performance limits of existing methods. There is a need to modify and adapt these to meet more stringent speed and capacity requirements. In this thesis, we aim to overcome the difficulties due to the multi-view nature of the object detection task. We significantly improve upon existing statistical keypoint matching algorithms to perform fast and robust recognition of image patches independently of object pose. We demonstrate this on various 2D and 3D datasets. The statistical keypoint matching approaches require massive amounts of training data covering a wide range of viewpoints. We have developed a weakly supervised algorithm to greatly simplify their training for 3D objects. We also integrate this algorithm in a 3D tracking-by-detection system to perform real-time Augmented Reality. Finally, we extend the use of a large training set with smooth viewpoint variation to category-level object detection. We introduce a new dataset with continuous pose annotations which we use to train pose estimators for objects of a single category. By using these estimators' output to select pose specific classifiers, our framework can simultaneously localize objects in an image and recover their pose. These decoupled pose estimation and classification steps yield improved detection rates. Overall, we rely on image and video sequences to train classifiers that can either operate independently of the object pose or recover the pose parameters explicitly. We show that in both cases our approaches mitigate the effects of viewpoint changes and improve the recognition performance

    Unsupervised learning of object landmarks by factorized spatial embeddings

    Full text link
    Learning automatically the structure of object categories remains an important open problem in computer vision. In this paper, we propose a novel unsupervised approach that can discover and learn landmarks in object categories, thus characterizing their structure. Our approach is based on factorizing image deformations, as induced by a viewpoint change or an object deformation, by learning a deep neural network that detects landmarks consistently with such visual effects. Furthermore, we show that the learned landmarks establish meaningful correspondences between different object instances in a category without having to impose this requirement explicitly. We assess the method qualitatively on a variety of object types, natural and man-made. We also show that our unsupervised landmarks are highly predictive of manually-annotated landmarks in face benchmark datasets, and can be used to regress these with a high degree of accuracy.Comment: To be published in ICCV 201
    • …
    corecore