496 research outputs found

    Design and Evaluation of Parallel and Scalable Machine Learning Research in Biomedical Modelling Applications

    Get PDF
    The use of Machine Learning (ML) techniques in the medical field is not a new occurrence and several papers describing research in that direction have been published. This research has helped in analysing medical images, creating responsive cardiovascular models, and predicting outcomes for medical conditions among many other applications. This Ph.D. aims to apply such ML techniques for the analysis of Acute Respiratory Distress Syndrome (ARDS) which is a severe condition that affects around 1 in 10.000 patients worldwide every year with life-threatening consequences. We employ previously developed mechanistic modelling approaches such as the “Nottingham Physiological Simulator,” through which better understanding of ARDS progression can be gleaned, and take advantage of the growing volume of medical datasets available for research (i.e., “big data”) and the advances in ML to develop, train, and optimise the modelling approaches. Additionally, the onset of the COVID-19 pandemic while this Ph.D. research was ongoing provided a similar application field to ARDS, and made further ML research in medical diagnosis applications possible. Finally, we leverage the available Modular Supercomputing Architecture (MSA) developed as part of the Dynamical Exascale Entry Platform~- Extreme Scale Technologies (DEEP-EST) EU Project to scale up and speed up the modelling processes. This Ph.D. Project is one element of the Smart Medical Information Technology for Healthcare (SMITH) project wherein the thesis research can be validated by clinical and medical experts (e.g. Uniklinik RWTH Aachen).Notkun vélnámsaðferða (ML) í læknavísindum er ekki ný af nálinni og hafa nokkrar greinar verið birtar um rannsóknir á því sviði. Þessar rannsóknir hafa hjálpað til við að greina læknisfræðilegar myndir, búa til svörunarlíkön fyrir hjarta- og æðakerfi og spá fyrir um útkomu sjúkdóma meðal margra annarra notkunarmöguleika. Markmið þessarar doktorsrannsóknar er að beita slíkum ML aðferðum við greiningu á bráðu andnauðarheilkenni (ARDS), alvarlegan sjúkdóm sem hrjáir um 1 af hverjum 10.000 sjúklingum á heimsvísu á ári hverju með lífshættulegum afleiðingum. Til að framkvæma þessa greiningu notum við áður þróaðar aðferðir við líkanasmíði, s.s. „Nottingham Physiological Simulator“, sem nota má til að auka skilning á framvindu ARDS-sjúkdómsins. Við nýtum okkur vaxandi umfang læknisfræðilegra gagnasafna sem eru aðgengileg til rannsókna (þ.e. „stórgögn“), framfarir í vélnámi til að þróa, þjálfa og besta líkanaaðferðirnar. Þar að auki hófst COVID-19 faraldurinn þegar doktorsrannsóknin var í vinnslu, sem setti svipað svið fram og ARDS og gerði frekari rannsóknir á ML í læknisfræði mögulegar. Einnig nýtum við tiltæka einingaskipta högun ofurtölva, „Modular Supercomputing Architecture“ (MSA), sem er þróuð sem hluti af „Dynamical Exascale Entry Platform“ - Extreme Scale Technologies (DEEP-EST) verkefnisáætlun ESB til að kvarða og hraða líkanasmíðinni. Þetta doktorsverkefni er einn þáttur í SMITH-verkefninu (e. Smart Medical Information Technology for Healthcare) þar sem sérfræðingar í klíník og læknisfræði geta staðfest rannsóknina (t.d. Uniklinik RWTH Aachen)

    GPU devices for safety-critical systems: a survey

    Get PDF
    Graphics Processing Unit (GPU) devices and their associated software programming languages and frameworks can deliver the computing performance required to facilitate the development of next-generation high-performance safety-critical systems such as autonomous driving systems. However, the integration of complex, parallel, and computationally demanding software functions with different safety-criticality levels on GPU devices with shared hardware resources contributes to several safety certification challenges. This survey categorizes and provides an overview of research contributions that address GPU devices’ random hardware failures, systematic failures, and independence of execution.This work has been partially supported by the European Research Council with Horizon 2020 (grant agreements No. 772773 and 871465), the Spanish Ministry of Science and Innovation under grant PID2019-107255GB, the HiPEAC Network of Excellence and the Basque Government under grant KK-2019-00035. The Spanish Ministry of Economy and Competitiveness has also partially supported Leonidas Kosmidis with a Juan de la Cierva Incorporación postdoctoral fellowship (FJCI-2020- 045931-I).Peer ReviewedPostprint (author's final draft

    Set-Stat-Map: Visualizing Spatial Data with Mixed Numeric and Categorical Attributes

    Get PDF
    Multi-attribute datasets are common and appear in many important scenarios for data analytics. Such data can be complex and thus difficult to understand directly without using visualization techniques. Existing visualizations for multi-attribute datasets are often designed based on attribute types, i.e., whether the attributes are categorical or numerical. Parallel Coordinates and Parallel Sets are two well-known techniques to visualize numerical and categorical data, respectively. However, visualization for mixed data types appears to be challenging. A common strategy to visualize mixed data is to use multiple information-linked views, e.g., Parallel Coordinates are often augmented with maps to explore spatial data with numeric attributes. In this paper, we design visualizations for mixed data types, where the dataset may include numerical, categorical, and spatial attributes. The proposed solution Set-Stat-Map is a harmonious combination of three interactive components: Parallel Sets (visualizes sets determined by the combination of categories or numeric ranges), statistics columns (visualizes numerical summaries of the sets), and a dataset-specified map view (geospatial map view for spatial information, heatmap for pairwise information, etc.). We also augment the Parallel Sets view in two main ways: First, we impose textures on top of colors, which are spread into the other views, to enhance users' capability of analyzing distributions of pairs of attribute combinations. Second, we limit the number of sets for each axis to a small number by merging some of them into one and limit the sizes of the merged sets to improve the rendering performance as well as to reduce users' cognitive loads. We demonstrate the use of Set-Stat-Map using different types of datasets: a meteorological dataset (CFSR), an online vacation rental dataset (Airbnb), and a software developer community dataset (StackOverflow). We provide design guidelines based on the results of the analysis of the performance from both visual analytics and scalability aspects. To examine the usability of the system, we collaborated with meteorologists, which reveals both challenges and opportunities for Set-Stat-Map to be used for real-life visual analytics

    A Hybrid In Situ Approach for Cost Efficient Image Database Generation

    Get PDF
    The visualization of results while the simulation is running is increasingly common in extreme scale computing environments. We present a novel approach for in situ generation of image databases to achieve cost savings on supercomputers. Our approach, a hybrid between traditional inline and in transit techniques, dynamically distributes visualization tasks between simulation nodes and visualization nodes, using probing as a basis to estimate rendering cost. Our hybrid design differs from previous works in that it creates opportunities to minimize idle time from four fundamental types of inefficiency: variability, limited scalability, overhead, and rightsizing. We demonstrate our results by comparing our method against both inline and in transit methods for a variety of configurations, including two simulation codes and a scaling study that goes above 19K cores. Our findings show that our approach is superior in many configurations. As in situ visualization becomes increasingly ubiquitous, we believe our technique could lead to significant amounts of reclaimed cycles on supercomputers.</p

    Machine Learning and Its Application to Reacting Flows

    Get PDF
    This open access book introduces and explains machine learning (ML) algorithms and techniques developed for statistical inferences on a complex process or system and their applications to simulations of chemically reacting turbulent flows. These two fields, ML and turbulent combustion, have large body of work and knowledge on their own, and this book brings them together and explain the complexities and challenges involved in applying ML techniques to simulate and study reacting flows. This is important as to the world’s total primary energy supply (TPES), since more than 90% of this supply is through combustion technologies and the non-negligible effects of combustion on environment. Although alternative technologies based on renewable energies are coming up, their shares for the TPES is are less than 5% currently and one needs a complete paradigm shift to replace combustion sources. Whether this is practical or not is entirely a different question, and an answer to this question depends on the respondent. However, a pragmatic analysis suggests that the combustion share to TPES is likely to be more than 70% even by 2070. Hence, it will be prudent to take advantage of ML techniques to improve combustion sciences and technologies so that efficient and “greener” combustion systems that are friendlier to the environment can be designed. The book covers the current state of the art in these two topics and outlines the challenges involved, merits and drawbacks of using ML for turbulent combustion simulations including avenues which can be explored to overcome the challenges. The required mathematical equations and backgrounds are discussed with ample references for readers to find further detail if they wish. This book is unique since there is not any book with similar coverage of topics, ranging from big data analysis and machine learning algorithm to their applications for combustion science and system design for energy generation

    General Purpose Flow Visualization at the Exascale

    Get PDF
    Exascale computing, i.e., supercomputers that can perform 1018 math operations per second, provide significant opportunity for improving the computational sciences. That said, these machines can be difficult to use efficiently, due to their massive parallelism, due to the use of accelerators, and due to the diversity of accelerators used. All areas of the computational science stack need to be reconsidered to address these problems. With this dissertation, we consider flow visualization, which is critical for analyzing vector field data from simulations. We specifically consider flow visualization techniques that use particle advection, i.e., tracing particle trajectories, which presents performance and implementation challenges. The dissertation makes four primary contributions. First, it synthesizes previous work on particle advection performance and introduces a high-level analytical cost model. Second, it proposes an approach for performance portability across accelerators. Third, it studies expected speedups based on using accelerators, including the importance of factors such as duration, particle count, data set, and others. Finally, it proposes an exascale-capable particle advection system that addresses diversity in many dimensions, including accelerator type, parallelism approach, analysis use case, underlying vector field, and more

    Co-designing reliability and performance for datacenter memory

    Get PDF
    Memory is one of the key components that affects reliability and performance of datacenter servers. Memory in today’s servers is organized and shared in several ways to provide the most performant and efficient access to data. For example, cache hierarchy in multi-core chips to reduce access latency, non-uniform memory access (NUMA) in multi-socket servers to improve scalability, disaggregation to increase memory capacity. In all these organizations, hardware coherence protocols are used to maintain memory consistency of this shared memory and implicitly move data to the requesting cores. This thesis aims to provide fault-tolerance against newer models of failure in the organization of memory in datacenter servers. While designing for improved reliability, this thesis explores solutions that can also enhance performance of applications. The solutions build over modern coherence protocols to achieve these properties. First, we observe that DRAM memory system failure rates have increased, demanding stronger forms of memory reliability. To combat this, the thesis proposes Dvé, a hardware driven replication mechanism where data blocks are replicated across two different memory controllers in a cache-coherent NUMA system. Data blocks are accompanied by a code with strong error detection capabilities so that when an error is detected, correction is performed using the replica. Dvé’s organization offers two independent points of access to data which enables: (a) strong error correction that can recover from a range of faults affecting any of the components in the memory and (b) higher performance by providing another nearer point of memory access. Dvé’s coherent replication keeps the replicas in sync for reliability and also provides coherent access to read replicas during fault-free operation for improved performance. Dvé can flexibly provide these benefits on-demand at runtime. Next, we observe that the coherence protocol itself requires to be hardened against failures. Memory in datacenter servers is being disaggregated from the compute servers into dedicated memory servers, driven by standards like CXL. CXL specifies the coherence protocol semantics for compute servers to access and cache data from a shared region in the disaggregated memory. However, the CXL specification lacks the requisite level of fault-tolerance necessary to operate at an inter-server scale within the datacenter. Compute servers can fail or be unresponsive in the datacenter and therefore, it is important that the coherence protocol remain available in the presence of such failures. The thesis proposes Āpta, a CXL-based, shared disaggregated memory system for keeping the cached data consistent without compromising availability in the face of compute server failures. Āpta architects a high-performance fault-tolerant object-granular memory server that significantly improves performance for stateless function-as-a-service (FaaS) datacenter applications

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems

    Get PDF
    Molecular dynamics (MD) has evolved into a ubiquitous, versatile and powerful computational method for fundamental research in science branches such as biology, chemistry, biomedicine and physics over the past 60 years. Powered by rapidly advanced supercomputing technologies in recent decades, MD has entered the engineering domain as a first-principle predictive method for material properties, physicochemical processes, and even as a design tool. Such developments have far-reaching consequences, and are covered for the first time in the present paper, with a focus on MD for combustion and energy systems encompassing topics like gas/liquid/solid fuel oxidation, pyrolysis, catalytic combustion, heterogeneous combustion, electrochemistry, nanoparticle synthesis, heat transfer, phase change, and fluid mechanics. First, the theoretical framework of the MD methodology is described systemically, covering both classical and reactive MD. The emphasis is on the development of the reactive force field (ReaxFF) MD, which enables chemical reactions to be simulated within the MD framework, utilizing quantum chemistry calculations and/or experimental data for the force field training. Second, details of the numerical methods, boundary conditions, post-processing and computational costs of MD simulations are provided. This is followed by a critical review of selected applications of classical and reactive MD methods in combustion and energy systems. It is demonstrated that the ReaxFF MD has been successfully deployed to gain fundamental insights into pyrolysis and/or oxidation of gas/liquid/solid fuels, revealing detailed energy changes and chemical pathways. Moreover, the complex physico-chemical dynamic processes in catalytic reactions, soot formation, and flame synthesis of nanoparticles are made plainly visible from an atomistic perspective. Flow, heat transfer and phase change phenomena are also scrutinized by MD simulations. Unprecedented details of nanoscale processes such as droplet collision, fuel droplet evaporation, and CO2 capture and storage under subcritical and supercritical conditions are examined at the atomic level. Finally, the outlook for atomistic simulations of combustion and energy systems is discussed in the context of emerging computing platforms, machine learning and multiscale modelling
    corecore