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Abstract—With reference to a single address space paradigm of memory reference, we
identify a set of mechanisms aimed at preserving the integrity of the virtual space of a
given process from erroneous or fraudulent access attempts originated from other processes.
These mechanisms guarantee a level of protection that is, in many respect, superior to
that of a traditional multiple address space environment. We introduce extended pointers
as a generalization of the concept of a memory address, which includes a password and an
access authorization. A universally known, parametric one-way function is used to assign
passwords. An ad hoc circuitry for address translation supports memory reference and
protection at the hardware level. A small set of protection primitives forms the process
interface of the protection system. The resulting protection environment is evaluated
from a number of viewpoints, which include extended pointer forging, and the review
and revocation of access authorizations. An indication of the flexibility of the proposed
protection paradigm is given by applying extended pointers to the solution of a variety of
protection problems.

Keywords: Access authorization, memory addressing, parametric one-way function,
password, protection.

1 INTRODUCTION

In a traditional memory management approach, a separate virtual space is assigned to each
process. The address space of a given process contains the information items relevant to
the execution of that process. Separation enforces protection; each process has no virtual
address that maps into a physical address belonging to another process. In a system
of this type, if an information item is placed at different virtual addresses for different
processes, complex synonym problems arise, in the circuitry for virtual to physical address
translation, and in the translation lookaside buffer, for instance [1], [2], [3]. Code and data
sharing is a relevant issue. A solution is to place the shared item at the same address in
the virtual spaces of all the processes involved in the sharing activities, in the present as
well as in the future [4]. This solution is prone to place severe constraints on address space
management.
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In a different approach, all the processes share a single address space [5], [6], [7], [8]. In
this approach, two or more processes aimed at accessing the same given information item
simply use the virtual address of this item. The virtual address is unique, and independent
of both the process, and the item position in the physical memory. Information sharing is
facilitated, but mechanisms must be provided to preserve the integrity of the virtual space
areas reserved for a given process from erroneous or malevolent access attempts originated
from the other processes. These mechanisms should guarantee a level of protection
comparable to that of a traditional multiple virtual space environment. An essential
requirement is that each process should have complete control over any form of access that
involves its own memory areas. This means that the distribution and revocation of access
privileges should be facilitated.

With reference to single address space systems and forms of segmentation with paging,
this paper presents a generalization of the concept of a pointer (memory address), called
extended pointer, which includes the specification of a memory segment, an access autho-
rization, and a password. If the password is valid, the extended pointer grants the specified
access authorization for the named segment. The access authorization can be expressed
in terms of any combination of the read, write, and execute access rights. We shall show
that a single password, the master password, is sufficient to define extended pointers for
an arbitrary number of segments. Extended pointers do not need to be segregated into
special memory regions. Instead, they can be mixed in memory with ordinary information
items. A subject that holds a given extended pointer can reduce this pointer to reference
a fraction of the original memory area, and can weaken the pointer to include less access
rights. The review and revocation of access authorizations is supported. Protection from
forgery is guaranteed by master passwords.

The rest of this paper is organized as follows. Section 2 introduces a classical protection
model based on subjects, objects and an access matrix. Preeminent implementations
of this model are analyzed. The accent is on the inherent problems and limitations of
each solution. Section 3 introduces our protection paradigm based on extended pointers.
Extended pointer validation and memory addressing are analyzed in special depth. An
ad hoc circuitry for address translation is presented, supporting a mechanism of memory
reference and protection based on extended pointers. A set of primitives is introduced, the
protection primitives, which form the process interface of the protection system. Section 4
gives an indication of the flexibility of the proposed protection paradigm. Extended
pointers are used to solve a variety of protection problems, which correspond to different
meanings associated with the concept of a segment. Section 5 discusses the proposed
protection environment from a number of viewpoints that include extended pointer forging,
the revocation of access authorizations, and the relation of our work to previous work.
Section 6 gives concluding remarks. Appendix A details the actions involved in the
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execution of each protection primitive.

2 THE PROTECTION MODEL

In a classical protection model, active entities S0, S1, . . ., called subjects, generate access
attempts to passive entities B0, B1, . . ., called objects [9], [10], [11]. Objects are typed.
The definition of the type of each object states the set of operations that can be applied
to this object, and a set of access rights. Each operation is associated with one or more
access rights. Execution of a given operation terminates successfully only if the subject
issuing this operation holds the corresponding access rights.

In this model, the protection system can be represented in the form of a matrix, called
the access matrix AM , featuring a row for each subject and a column for each object
[12], [13], [14]. The contents of element AMi,j in row i and column j specifies the access
authorization held by subject Si on object Bj. An access authorization is a collection
of access rights. A central issue in the implementation of a protection system is how to
represent the access matrix in memory. Capability-based addressing is a multi-decade old
solution to this problem.

2.1 Capabilities

A capability is a protected pointer having the form (Bj, z), where Bj is the identifier of
a protected object, and z specifies an access authorization for this object [15], [16], [17].
Typically, the z field is encoded as a sequence of bits, one bit for each access right that
may be included in an access authorization. If the bit in a given position of z is asserted,
then the capability grants the access right for object Bj that corresponds to that position.

The set of capabilities held by a given subject specifies the access authorizations held by
that subject on the protected objects. A subject Si aimed at executing a given operation
on object Bj is required to exhibit a capability (Bj, z), and the z field of this capability
must specify the access authorization which is necessary for successful execution of that
operation. In the access matrix model, the capability-based approach corresponds to a
representation of the access matrix that is by rows. If Si holds capability (Bj, z), then z

specifies the contents of element Mi,j of the access matrix.
In a classical implementation of a capability-based addressing system, the objects

are memory segments, i.e. sets of adjacent memory cells. The processor hardware is
augmented by an array of special registers, the capability registers, where capabilities are
stored for memory reference [18], [19]. A subject aimed at accessing a given segment must
have previously loaded a capability for this segment into a capability register. For each
memory address, the instruction formats incorporate the index of a capability register in
the capability register array. The access terminates successfully only if the capability in
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the named register includes the necessary access authorization, e.g. access right write if a
data segment should be accessed to modify its contents.

2.1.1 Segregation

A basic problem in capability systems is capability segregation. We must prevent an
erroneous or fraudulent process from altering a capability, for instance, by adding new
access rights, or even modifying the object identifier to forge a new capability for a different
object. In a segmented memory system, a viable solution is to reserve special segments
for capability storage, the capability segments [15] (in contrast, the data segments will
be reserved to store ordinary information items). In this approach, the instruction set
of the processor includes a few special instructions, the capability instructions, aimed at
manipulating capabilities in a strictly controlled fashion. Only the capability instructions
can be used to access a capability segment; if an ordinary instruction is used, a protection
exception is raised, and execution fails. This approach is prone to segment proliferation.
Processes are forced to adhere to a complex model for data structuring, which usually
takes the form of a tree. The root and the nodes at the intermediate levels of the tree are
reserved for capability storage, whereas ordinary information items are contained in the
leaf nodes. Consider a simple data item supported by two data segments, for instance. A
capability segment is necessary to contain the capabilities for these data segments. This is
an undesirable complication of the whole memory management process.

In an alternative approach, a one-bit tag is associated with each memory cell. If
asserted, the tag of a given cell specifies that this cell contains a capability [19], [20], [21].
If an ordinary instruction is issued on a cell whose tag is asserted, a protection exception is
raised, and execution of the instruction fails; alternatively, the tag is cleared to invalidate
the capability [22]. The tag based approach must be supported by ad hoc memory systems,
e.g. the cells in the memory banks of a 64-bit system will be 65 bits wide. This is in
contrast with the requisite of hardware standardization. Complications ensue in the caches,
which have to store the tags, and in memory management, owing to the need to save and
then restore the tags as part of the usual page swapping activities between the primary
memory and the secondary memory.

2.1.2 Review and revocation

The main advantage of capability systems is simplicity in object sharing. A subject that
holds a capability referencing a given object is free to transfer a copy of this capability
to another subject. In this way, the recipient acquires the access authorization specified
by that capability. The recipient can also transmit the capability further. As a result,
it is hard to keep track of the memory location of every copy of a given capability. The
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original capability holder should be given the ability to review the distribution and revoke
the capability copies from the recipients.

2.2 Passwords

2.2.1 Segregation

In a different, password-based protection model, a collection of passwords is associated
with each given object, a password for each access authorization defined for that object. A
subject that holds one of these passwords is allowed to access the object to carry out the
operations permitted by the corresponding access authorization. If passwords are large,
sparse and chosen at random, the processing time cost for a fraudulent subject to guess a
valid password by a brute force attack can be prohibitive. It follows that passwords can
be mixed in memory with ordinary information items; this is an effective solution to the
segregation problem.

2.2.2 Proliferation

A drawback of password-based approaches is password proliferation. The internal represen-
tation of a given object should contain the passwords corresponding to all the significant
access authorizations for this object. High memory costs are connected with the neces-
sity to store several passwords for each object. The resulting complexity in access right
management can be inappropriate, especially if protection should be exercised at a high
granularity level, for small-sized objects and many different access authorizations. Ease
of access right management is especially important if we are aimed at supporting the
principle of least privilege, i.e. each subject should be granted least possible privileges,
and a privilege should be granted to least possible subjects [23], [24].

For instance, for memory segments and the usual access rights, read, write, and execute,
a complete coverage of all possible access authorizations would require a total of seven
passwords for each segment, one password for each combination of the three access rights.
Alternatively, we can take advantage of three passwords, one password for each access
right. In this case, a subject that holds full access rights for a given segment should possess
the three passwords of this segment. Successful execution of an action requiring both to
read and to modify the segment contents implies that two passwords are presented and
validated.

2.2.3 Weakening and reduction

Further issues are password weakening and reduction. A subject that holds a given
password is free to transfer this password to another subject. Consequently, the recipient
acquires the whole access authorization connected with the password. It is impossible
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for the original subject to weaken the access authorization expressed by the password.
Consider a password for a given memory segment, for instance, and suppose that this
password corresponds to the three access rights, read, write and execute. The process that
holds this password may well be aimed at transmitting an access authorization to read
only. Intervention of a password manager is necessary, which is part of the protection
system. The process sends the original password to the password manager, and receives
the password corresponding to the weakened authorization. If one such password does
not exist, the password manager should create this password. If this is indeed impossible,
a negative response is sent to the original process. The entire procedure is much more
complicated than implied by the required effect. A different solution is desirable, whereby
the process is given the ability to weaken the password autonomously.

Furthermore, it is impossible to reduce a password to reference an object fraction.
Consider a process that holds the password for a given memory area, and is aimed at
transforming this password to reference a segment in that area. Once again, a mechanism
is desirable whereby the process can carry out the transformation autonomously.

3 THE PROTECTION SYSTEM

This paper presents an overall solution to the problems, outlined above. We refer to single
address space systems featuring a virtual space that is partitioned into fixed-size pages.
A virtual memory area is a sequence of adjacent pages. Areas can overlap, partially or
totally. This means that a page can be part of two or more areas. Areas cannot be used
for effective memory accesses. Instead, segments are the units of virtual memory reference.
A segment is a sequence of adjacent pages entirely contained within the boundaries of an
area. Thus, a segment is a fraction of an area. In our protection model, objects can be
areas and segments, and subjects can be processes or, in an event driven environment,
activities caused by events, e.g. hardware interrupts [25]. For an area, a single action is
defined, to create segments in this area. For a segment, the three actions are to read, to
modify and to execute the segment contents.

An extended pointer can be an area pointer or a segment pointer. An area pointer
specifies an area and a password. If the password is valid, the area pointer grants the
authorization to create segments in this area. A segment pointer specifies an area, a
segment in this area, an access authorization and a password. The access authorization
can be expressed in terms of any combination of the read, write and execute access rights.
If the password is valid, the segment pointer grants the specified authorization for the
named segment.
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Figure 1: An area a consisting of ga adjacent pages. The area starts at page ba, the area base. It
includes a segment s consisting of gs adjacent pages. The segment starts at page ba + bs, where
bs is the segment base.

3.1 Areas and Segments

An area a is completely defined by an area base ba, equal to the order number of the first
page of the area, and an area length ga, equal to the number of pages that form the area
(Figure 1). A segment s included in area a is completely defined by the segment base bs,
equal to the number of pages between the first page of the area and the first page of the
segment, and a segment length gs, equal to the number of pages that form the segment.
Thus, the absolute numbers of the first and last page of segment s are given by ba + bs and
ba + bs + gs − 1, respectively. The inclusion condition is bs + gs ≤ ga, that is, the entire
segment must be contained within the area boundaries.

When a process is generated, one or more master passwords are created, and one or
more virtual memory areas are allocated for this process. Several master passwords for
the same process permit forms of selective revocation of access authorizations; this issue
will be discussed later. For each area, an area pointer is created, and is granted to the
process. The area pointer includes an area descriptor, which identifies the area, and an
area password. The area pointer is valid only if the area password is valid, that is, it
descends from a master password by application of a parametric one-way function, the
global function f , which is unique for the whole system, and is universally known. Function
fp(x) is parametric one-way if, given a parameter p and a value y, it is computationally
unfeasible to determine x such that y = fp(x) [26]. Thus, a parametric one-way function
is a family of one-way functions, one for each value of the parameter [27]. The design and
implementation efforts can be reduced by taking advantage of a good cryptosystem, e.g.,
if Ex is a symmetric cipher, we have fp(x) = Ex(p) [28].

A process that holds a valid pointer for a given area can allocate segments in this
area. For each segment, the process receives a segment pointer, which can be used to
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Table 1: Extended pointers.

Area pointer Pa = (M, da, descra)
M : identifier of a master password
da: value of an area password
da = fdescra

(m)
m: value of master password M
descra = (ba, ga): area descriptor
ba: area base
ga: area length

Segment pointer Ps = (M, ds, descra, descrs)
ds: value of a segment password
ds = fdescrs

(da) = fdescrs
(fdescra

(m))
descrs = (bs, gs, zs): segment descriptor
bs: segment base
gs: segment length
zs: access authorization

access the segment. The segment pointer is a form of extended pointer that includes an
area descriptor identifying the area, and a segment descriptor identifying the segment.
In turn, the segment descriptor includes an access authorization specifying the actions
that can be successfully accomplished on the segment contents. The access authorization
can be expressed in terms of any combination of the three access rights, read, write and
execute. The segment pointer also includes a segment password. The pointer is valid only
if the segment password is valid, that is, it descends from the password of the area of that
segment by application of global function f .

3.2 Extended Pointers

The descriptor of area a is denoted by descra. It has the form (ba, ga), where ba is the
area base and ga is the area length. An area pointer Pa that references a has the form
Pa = (M, da, descra), where M is the identifier of a master password, and da is the value
of an area password (Table 1). We have da = fdescra(m), where quantity m is the value of
the master password whose identifier is M , and the parameter of global function f is the
result of the concatenation (joining) of quantities ba and ga that form descra.

The descriptor of segment s is denoted by descrs; it has the form (bs, gs, zs), where bs is
the segment base, gs is the segment length, and zs is an access authorization. Quantity zs

is encoded in three bits, one bit for each of the three access rights, read, write and execute.
A given access right is included in zs if the corresponding bit is asserted. A segment pointer
Ps that references s has the form Ps = (M, ds, descra, descrs), where M is the identifier of
a master password, ds is the value of a segment password, descra is the descriptor of the
area a including s, and descrs is the segment descriptor. We have ds = fdescrs(da), where
the parameter of global function f is the result of the concatenation of the three quantities
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bs, gs, and zs that form descrs. Thus, the password of a given segment is the result of
a double application of function f , to produce da and ds, respectively. In the second
application, zs is part of the parameter, and consequently, different access authorizations
for the same segment correspond to different segment passwords.

Let us now consider a subject S that holds pointer Pa = (M, da, descra) referencing area
a, as is specified by area descriptor descra = (ba, ga). Suppose that S is aimed at generating
a pointer for a segment s in a, as is specified by segment descriptor descrs = (bs, gs, zs). S

is in the position to generate the segment pointer by applying global function f to da. We
have Ps = (M, ds, descra, descrs), where ds = fdescrs(da). We have obtained this important
result by taking advantage of global function f , which is universally known.

3.3 Extended Pointer Validation

The protection system maintains a table, the master password table, featuring an entry for
each master password. The entry for a given master password contains both the identifier
M and the value m of this master password. The table is contained in a memory region
reserved for the protection system. Thus, ordinary processes are prevented from accessing
the values of the master passwords.

An extended pointer defined in terms of a given master password is valid if the area
or segment password it contains can be generated by application of global function f ,
starting from the value of that master password. More specifically, let us consider area
pointer Pa = (M, da, descra), where descra = (ba, ga). Pa is valid if area password da

can be generated starting from the value m of master password M , according to relation
da = fdescra(m). Quantity m is only contained in the password table, and consequently,
the area pointer can only be validated by the protection system. Similarly, let us consider
segment pointer Ps = (M, ds, descra, descrs), where descrs = (bs, gs, zs). Ps can be
validated by applying global function f twice, i.e. Ps is valid if ds = fdescrs(fdescra(m)). In
this case, too, validation requires quantity m, and consequently, it is a prerogative of the
protection system.

3.4 Memory Addressing

The protection model, described so far, is conceived to be integrated at the hardware
level with an ad hoc circuitry for address translation. This circuitry supports a pointer-
based mechanism of memory reference and protection. It includes an array of registers,
the pointer registers PR0, PR1, . . ., which are loaded and possibly cleared under control
of user programs. Let us refer to the segment referenced by segment pointer Ps =
(M, ds, descra, descrs), where descra = (ba, ga) and descrs = (bs, gs, zs). Each pointer
register can contain an internal descriptor, derived from a segment pointer. The internal
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Figure 2: Translation of a memory address generated by the processor into a virtual address
consisting of a virtual page number and an offset. The processor address has the form (i, d),
where quantity i selects pointer register PRi in the pointer register array, and quantity d is a
displacement in the segment referenced by this pointer register.

descriptor is a triple (ba + bs, gs, zs), where quantity ba + bs is the absolute number of the
first page of a memory segment (see Figure 1).

A memory address generated by the processor has the form (i, d), where quantity i

identifies a pointer register, and quantity d is a displacement. The address translation
circuitry converts this processor address into a virtual address consisting of a page number
and an offset. The translation proceeds as follows (Figure 2):

1. Quantity i is used to select pointer register PRi in the pointer register array. Let
(ba + bs, gs, zs) be the internal descriptor contained in this pointer register.

2. Displacement d is partitioned into a page number pg and an offset of . The page
number is compared with quantity gs, contained in PRi. If pg > gs, an addressing
exception is generated to the processor. Otherwise,

3. The bitwise and of the values of the read/write/execute control lines from the
processor and the corresponding three bits that form the zs field of PRi is evaluated.
If the result is 0, the access right necessary to accomplish the access is lacking (e.g.
the access is to write and the write bit in zs is cleared). In this case, a protection
exception is sent to the processor. Otherwise,

4. The base ba +bs of the memory segment specified by PRi is added to page number pg

and is paired with offset of to obtain the virtual address of the referenced information
item. This virtual address is sent to the circuitry for virtual-to-physical address
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translation.

3.5 Special Passwords

The protection system defines three special access rights, namely create, delete, and new.
Access rights create and delete make it possible to create new master passwords, and to
delete the existing master passwords, respectively. Access right new makes it possible to
allocate new virtual memory areas. When the system is initialized, three passwords are
generated, called the special passwords, one password for each special access right. We
shall denote the value of a special password by w, e.g. wnew is the value of the special
password granting access right new.

The special passwords are assigned to selected system components. Examples are the
process allocator, the process deallocator, and the area manager, which are assigned wcreate,
wdelete and wnew, respectively. When a new process is generated, the process allocator
uses wcreate to create one or more master passwords; these master passwords are assigned
to the process. When a process asks for a memory area, the area manager determines
whether the request can be accepted, and then, it allocates a new area by using wnew

and the master passwords indicated by the process. A pointer for this area is returned to
the process. When a process terminates, the process deallocator uses wdelete to delete the
master passwords assigned to that process.

A process that holds a pointer for a given area is in the position to allocate segments
in that area. Afterwards, these segments can be used for memory reference. No special
password is necessary for segment allocation. The process can interact with other processes
via shared segments; to this aim, pointers for these segments should be preventively copied
to these other processes.

3.6 Protection Primitives

We hypothesize that the processor supports a separation between a system mode and a
user mode with memory access limitations. In the system mode, the processor can access
the pointer registers to modify their contents, as is necessary to load a pointer register
with an internal descriptor resulting from translation of a segment pointer (see Section
3.4). Furthermore, in the system mode the address translation circuitry, illustrated in
Figure 2, is disabled. In a processor address, the index i of the pointer register is ignored;
the displacement d is partitioned into a page number and an offset to form the virtual
address. No page number relocation takes place, and no access right check is carried out.

In contrast to traditional protection models using the system mode for operating
system activities, in our model the system mode is restricted to the execution of a set of
primitives, the protection primitives, which form the process interface of the protection
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Table 2: The protection primitives.

M ← createMasterPassword(wcreate)
Creates a new master password, inserts the identifier M and the value m of this master password
into a free entry of the master password table, and returns M . Requires special password wcreate.

deleteMasterPassword(wdelete, M)
Deletes the master password whose identifier is M from the master password table. Requires special
password wdelete.

Pa ← newArea(wnew, M, descra)
Allocates the area specified by descra. Returns a pointer Pa = (M, da, descra) referencing the new
area, where da = fdescra

(m) is the area password. Requires special password wnew.
Ps ← newSegment(Pa, descrs)

Allocates the segment specified by descrs in the area referenced by area pointer Pa = (M, da, descra).
Returns a pointer Ps = (M, ds, descra, descrs) referencing this segment, where ds = fdescrs

(da) is
the segment password corresponding to the access authorization specified by descrs. Requires a
valid Pa.

loadPointerRegister(Ps, i, mask)
Transforms the segment descriptor descrs, contained in segment pointer Ps, into an internal descriptor,
and loads the result into pointer register PRi. Uses mask to weaken the access authorization zs in
descrs. Requires a valid Ps.

clearPointerRegister(i)
Clears pointer register PRi.

system (Table 2). These primitives can be implemented at software level by system
routines. A call to a protection primitive takes the form of a system call that traps into
the system mode. This is necessary to access the pointer registers and the memory regions
reserved for the protection system, in particular the master password table (see Section
3.3).

In the rest of this section, we shall illustrate the effects of each protection primitive
from the point of view of a process that issues a call to this primitive. Appendix A contains
a more detailed description of the actions involved in the execution of each primitive.

3.6.1 Master passwords

A first example of a protection primitive is the M ← createMasterPassword(wcreate)
primitive. Its execution generates the identifier M and the value m of a new master
password, and returns M . Pair (M, m) is inserted into a free entry of the master password
table. Execution requires special password wcreate. This primitive is used by the process
allocator while generating a new process, to create the master passwords for this process
(see Section 3.5).

Protection primitive deleteMasterPassword(wdelete, M) deletes the master password
whose identifier is M . Execution of this primitive eliminates this master password from
the master password table. Execution requires special password wdelete. This primitive
can be used by the process deallocator when a process terminates, to delete the master
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passwords associated with this process. Furthermore, the ability to delete the master
passwords supports the review and revocation of access authorizations. This issue will be
discussed in depth in forthcoming Section 5.4.

3.6.2 Extended pointers

Let descra = (ba, ga) be an area descriptor, where ba is the area base and ga is the area
length. Protection primitive Pa ← newArea(wnew, M, descra) allocates the memory area
specified by descra, and returns a pointer Pa = (M, da, descra) referencing this area. Area
password da in Pa is generated by using relation da = fdescra(m), where m is the value
of the master password identified by argument M (see Section 3.2). Execution requires
special password wnew.

Let descrs = (bs, gs, zs) be a segment descriptor, where bs is the segment base, gs

is the segment length, and zs is an access authorization. Protection primitive Ps ←
newSegment(Pa, descrs) allocates the segment specified by descrs in the memory area
referenced by area pointer Pa, and returns a pointer Ps = (M, ds, descra, descrs) referencing
this segment, where ds = fdescrs(da). As seen in Section 3.5, no special password is required
to generate segment pointers. In fact, a process that holds a valid pointer for a given area
is free to allocate segments in this area. For the given segment, access authorization zs in
descrs is configured according to the intended purpose, e.g., if the segment corresponds to
a portion of an area storing executable code, the access authorization will include a single
access right, execute.

3.6.3 Pointer registers

As seen in Section 3.4, a memory segment can be accessed only after the segment descriptor
in a valid pointer referencing this segment has been transformed into an internal descriptor,
and the result of this transformation has been loaded into a pointer register. An effect of this
type can be obtained by executing protection primitive loadPointerRegister(Ps, i, mask),
where Ps is a segment pointer, i identifies pointer register PRi, and mask can be used to
remove unnecessary access rights to weaken the access authorization in Ps, according to
the principle of least privilege.

In terms of memory resources, least privilege implies that a pointer register referencing
a given segment should be cleared on termination of the actions involving this segment.
To this aim, protection primitive clearPointerRegister(i) can be used, which invalidates
pointer register PRi by loading it with a null internal descriptor.

Let us consider the case of a subject S that holds pointer Pa referencing area a, and is
aimed at accessing the entire area. To this aim, S generates a segment whose boundaries
are the same as the area. Let descra = (ba, ga) be the area descriptor. The descriptor of
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the new segment is descrs = (0, ga, zs), where zs is the desired access authorization. S

uses protection primitive newSegment to forge a pointer Ps for the new segment. Then, S

issues protection primitive loadPointerRegister to transform Ps into an internal descriptor,
and to load the result into a pointer register.

4 EXAMPLES OF APPLICATIONS

Extended pointers can be used to solve a variety of protection problems efficiently. In this
section, we consider a few significant examples of these problems, where extended pointers
are used to implement a bounded buffer, hierarchical ports, an access control list paradigm
of access control, and pointer repositories, which are segments reserved to contain segment
pointers. These examples are by no means exhaustive; they are only aimed at giving an
indication of the flexibility of the extended pointer concept. In these examples, an access
authorization is denoted by curly brackets, e.g. {rwx} stands for an access authorization
that includes all the three access rights read, write and execute, and {r} stands for an
access authorization that includes a single access right, read.

4.1 Bounded Buffer

Let us consider the classical problem of a bounded buffer. A producer process inserts data
items into the buffer, and a consumer process extracts data items from the buffer. To
simplify the presentation, we shall not consider the well-known aspects of this problem,
which are related to process synchronization and mutual exclusion. Instead, we shall
concentrate on memory sharing.

In a possible solution, the producer uses protection primitive newSegment to create
two segments for the buffer, say s1 and s2. These segments are perfectly overlapped,
that is, they have identical bases and lengths. However, the access authorizations are
different. In fact, the producer writes data into s1, and the consumer reads data from
s2. We have descr1 = (b, g, {w}) and descr2 = (b, g, {r}), where b and g denote the base
and the length of the buffer, and the access authorizations are to write only in descr1 for
the producer, and to read only in descr2 for the consumer. The corresponding segment
pointers, as returned by newSegment, have the form P1 = (M, fdescr1(da), descra, descr1)
and P2 = (M, fdescr2(da), descra, descr2), where a is the area containing the two segments,
M is the name of the master password used to create a, and da is the password of a. The
producer will grant P2 to the consumer. Afterwards, the producer will use P1 to write
into the buffer, and the consumer will use P2 to read from the buffer.
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4.2 Hierarchical Ports

Let us consider a communication system featuring a server process that can receive data
from client processes on a priority basis. The system features n communication ports.
Each port is assigned a priority in the range from 0 (the highest priority) to n− 1. Each
client has a priority, and can transmit data to the server using the ports at the same
or a lower priority. This means that a client at priority i can use the ports at priority
i, i + 1, . . . , n− 1.

Let us hypothesize that the size of a port is one page. The server process allocates a
segment s aimed at containing all the ports. We have descrs = (b, n, {r}), where b denotes
the segment base, the segment length is n pages, one page for each port, and the access
authorization is to read only. Furthermore, the server process creates a segment for each
priority level. The descriptor of segment ci reserved for priority level i is (b+i, n−i+1, {w}),
that is, ci has a size of n− i + 1 pages and it includes ports i, i + 1, . . . , n− 1. When a
new client enters the communication system at priority level i, it is assigned an extended
pointer for segment ci, and the access authorization is {w}.

4.3 Access Control Lists

The access matrix, introduced in Section 2, can be represented in memory by columns.
In this case, a list, called the access control list, is associated with each object [29]. The
access control list ACLj of object Bj consists of a collection of entries having the form
(Si, z), where Si is the name of a subject, and z is an access authorization. When subject
Si attempts to access object Bj to execute a given operation op, the request must include
a certification of the subject identity. Execution of op inspects ACLj to find the entry for
Si, to verify that the z field of this entry includes the access rights necessary to execute op.
If this is not the case, a negative acknowledgement is returned to Si, and the execution of
the operation fails.

Of course, a crucial requirement is that process identities cannot be counterfeited. We
can obtain this result by using null pointers. A null pointer is an extended pointer that
references a segment of size one page, positioned at the base of the area assigned to the
given process to store the process code. The null pointer features no access authorization.
Thus, if b denotes the area base, the descriptor of the null pointer has the form (b, 1, {}).
Of course, the null pointer cannot be used to access the corresponding segment, as it
includes no access right. Instead, in our example, it is transmitted to operation op to
certify the identity of the issuing process.
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4.4 Pointer Repositories

A pointer repository is a segment reserved to contain extended pointers. The segments
referenced by the pointers in a pointer repository may be pointer repositories, or ordinary
data segments. It follows that pointer repositories and data segments can be organized
into a hierarchical tree structure, whereby the root and the intermediate nodes are pointer
repositories, and the terminal nodes are data segments.

An interesting observation is that a segment pointer referencing a pointer repository
may grant access authorizations stronger than that included in the segment pointer itself.
In fact, if the segment pointer specifies access right read for the pointer repository, a
subject that holds the segment pointer is in the position to extract the extended pointers
contained in the pointer repository, to use them to access the segments they reference.
In contrast, if the access right is write, the subject is only allowed to access the segment
repository to add new extended pointers, to overwrite the existing extended pointers, or
to delete them. Write does not permit any form of access to the segments referenced by
these extended pointers.

5 DISCUSSION

5.1 Pointer Registers

As seen in Section 3.4, an address generated by the processor has the form (i, d), where
quantity i selects a pointer register PRi, and quantity d is a displacement in the segment
referenced by the internal descriptor in PRi. The contents of the pointer registers cannot
be altered freely. Instead, these contents can only be modified by protection primitives
loadPointerRegister and clearPointerRegister. A process that holds a given segment pointer
and is aimed at accessing the segment referenced by this pointer issues loadPointerRegister
preventively, to translate the segment pointer into an internal descriptor, and to load the
result into a specific pointer register. Afterwards, this pointer register can be used for
any sequence of accesses to the corresponding segment, until the contents of the pointer
register are cleared, or are replaced with a new internal descriptor. If the pointer register
array is dimensioned adequately, the necessity of a replacement will be comparatively rare.
In a situation of this type, at any given time, the segments referenced by the registers
in the pointer register array are a good approximation of the working set of the process
running at that time.

5.2 Master Passwords

As seen in Section 3.5, special passwords wcreate and wdelete are intended to be held by
system components only, e.g. the process allocator and the process deallocator. It follows
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that an ordinary process, which does not possess wcreate, is not entitled to create new
master passwords. When a new process is started up, the process allocator creates one
or more master passwords, and assigns these master passwords to this process. When
a process terminates, the process deallocator deletes the master passwords that were
assigned to this process. This means that all the area and segment pointers generated
by using these master passwords are invalidated; it will no longer possible to use these
extended pointers for successful memory accesses. In fact, as seen in Section 3.6.3, the
segment referenced by a given segment pointer can be accessed only after the pointer has
been transformed into an internal descriptor, and the result has been loaded into a pointer
register. These actions are carried out by protection primitive loadPointerRegister, which
validates the pointer by using the master password that was used to create that pointer.
If the master password has been deleted, the validation is destined to fail.

5.3 Forging Extended Pointers

Let us consider a fraudulent subject running in the user mode, and aimed at forging an
area pointer from scratch. The area pointer includes the name M of a master password,
the area descriptor, and the value da of the area password. Quantity M can be copied
from a valid extended pointer at little effort. The configuration of the area descriptor will
be set in relation to the area that the area pointer should reference. The area password is
given by relation da = fdescra(m). This relation uses global function f , which is universally
known. However, the value m of master password M is stored in the master table, which
can only be accessed in the system mode. Of course, if master passwords are large, sparse,
and chosen at random, the effort required to forge a valid area pointer by a brute force
attack can be extremely high.

Let us now consider a subject that possesses a valid pointer for a given segment, and
is aimed at forging a pointer for an area enclosing this segment. The segment pointer
includes the value ds of the segment password, which is expressed in terms of the value
da of the area password, according to relation ds = fdescra(da). But global function f is
one-way. This means that is computationally unfeasible to invert f to evaluate da starting
from ds. In this case, too, a solution is to use a value chosen at random, but the probability
of success is vanishingly low.

5.4 The Revocation Problem

A subject that holds an area or segment pointer is free to grant a copy of this pointer to
another subject. In turn, the recipient can transfer the extended pointer further. As a
result, it may be hard to keep track of the position in memory of all the copies of the
extended pointer. The revocation of access authorizations is a related issue. The original
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subject should be given the ability to review the pointer distribution, and revoke the access
authorizations from the recipients.

Several solutions to this review and revocation problem have been conceived in the
past with special reference to capability systems. A propagation graph can be constructed,
which links all the access authorizations for the same given object [30], [31]. Temporary
access authorizations can be used to force renewal, or automatic revocation [32]. A
centralized reference monitor can be associated with each given object to keep track of all
the subjects that hold an access authorization for this object [33]. All these solutions tend
to adversely affect simplicity in the distribution of access rights.

In our system, the revocation of access authorizations is supported by the ability to
delete the master passwords. In fact, if we delete a given master password, all the area and
segment pointers defined in terms of this master password are invalidated; it will be no
longer possible to use the area pointers to allocate new segments, and the segment pointers
to access the corresponding memory pages. This revocation mechanism is transitive [30],
that is, the effects of a revocation of an access authorization propagates automatically to
all the subjects that hold this access authorization. In fact, a copy of an extended pointer
is indistinguishable from the original.

As seen in Section 3.6.2, the arguments of protection primitive newArea include an
area descriptor. This primitive places no limitations on the contents of this descriptor.
Consequently, it is always possible to allocate two or more areas that overlap in memory,
partially or totally. In a situation of this type, two or more segments belonging to different
memory areas can share a common set of memory pages. If these areas were allocated by
using different master passwords, and we delete one of these master passwords, all the
pointers for the segments in the corresponding area are revoked; it will be no longer possible
to take advantage of these pointers to access the segments. However, the validity of the
pointers referencing the other overlapped segments is not affected, and the corresponding
memory pages remain accessible by using these pointers. Thus, we are the presence of a
form of independent [30] revocation of access authorizations, whereby access rights received
from independent sources can be revoked independently of each other.

Suppose that primitive loadPointerRegister has been used to transform a pointer into
an internal descriptor, and to load the result into a pointer register, as was illustrated
in Section 3.6.3. If the pointer was created by using a given master password, and this
master password is subsequently deleted, the contents of the pointer register are not
affected by the deletion. This means that the pointer register can be used to access
the segment even after deletion of the master password, until the register contents are
replaced by a new execution of primitive loadPointerRegister, or are cleared by execution
of primitive clearPointerRegister. An attractive property of this form of delayed revocation
is that it never causes object inconsistencies, as may be the case for immediate revocation
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mechanisms, if an access authorization for a given object is cancelled while an operation is
being executed on that object [30].

If we delete a master password that was used to allocate a given memory area, we
invalidate all the pointers referencing this area. If we subsequently use a different master
password to allocate a new area including the same memory pages, the validity the previous
pointers, which referenced the old area, is not renewed. Similar considerations can be
made for segment pointers.

5.5 Extended pointers and password capabilities

Password capabilities are an application of the password concept that received much
attention in the past [25], [34], [35], [36], [37]. A password capability is a protected pointer
having the form (Bj, w), where Bj is the identifier of a protected object, and w is a
password. A set of passwords is associated with each object, one password for each access
authorization defined for this object. A subject that is aimed at executing an operation on
a given object must present a password capability referencing this object. If the password
in that password capability matches one of the password associated with the object, and
the access rights in the corresponding access authorization permit execution of the intended
operation, the operation is actually executed, otherwise execution fails.

If passwords are large, sparse and chosen at random, the processing time cost for a
fraudulent process to guess a valid password to forge a password capability from scratch by
a brute force attack can be extremely high. Thus, password capabilities are a solution to
the segregation problem, and they constitute an important improvement on the concept of
a capability. Furthermore, if one of the password associated with a given object is changed,
all the password capabilities defined in terms of that password are no longer valid. This is
an effective solution to the problem of the review and revocation of access authorizations.

A drawback of password capability systems is password proliferation. Many passwords
should be associated with the given object to exercise protection at a high level of
granularity, for many different access authorizations. Inappropriate complexity follows in
access right management, and the resulting memory cost for password storage can be a
high fraction of the total, especially for small objects and large passwords.

Furthermore, in their original formulation, password capabilities suffer from the lack of
mechanisms for weakening and reduction. A subject that holds a given password capability
has no means to weaken this password capability to include less access rights. Similarly, it
is impossible for a given subject to reduce a password capability to reference a fraction
of the original object, e.g., for a password capability referencing a given memory area, a
segment in this area.

The extended pointer concept, introduced in this paper, can be seen as a revisitation

— 19 —



of the password capability concept that applies to memory areas and segments. We solve
the password proliferation problem by taking advantage of a parametric one-way function,
the global function. By executing protection primitive newArea, a single master password
allows the area manager to allocate one or more memory areas for a given subject. By
executing protection primitives newSegment, the subject can allocate an unlimited number
of segments in each of these areas. As seen in Section 3.6.2, the arguments of newSegment
include a segment descriptor, which specifies the base and the length of the new segment,
and an access authorization. A subject that possesses the pointer for a given area and is
aimed at a weak authorization for a segment in this area simply issues newSegment to
create the new segment. If the subject is aimed at a segment reduction, it creates a new
segment with the same base and authorization, and a reduced length.

6 CONCLUDING REMARKS

With reference to a single address space paradigm of memory reference, we have identified
a set of mechanisms aimed at preserving the integrity of the memory space reserved for a
given process from erroneous or malevolent access attempts originated from other processes.
These mechanisms guarantee a level of protection that is, in many respect, superior to that
of a traditional multiple virtual space environment. An essential requirement has been
that each process should have a complete control over any form of access that involves its
own memory space. In our approach:

• A universally known, parametric one-way function, the global function, is used to
assign passwords to areas and segments.

• The protection system maintains a single table for the administration of access
authorizations, the master password table, where the names and the values of all
master passwords are recorded.

• An ad hoc circuitry for address translation supports a pointer-based mechanism for
memory reference and protection at the hardware level. This circuitry includes a set
of special registers, the pointer registers, aimed at storing segment pointers in an
internal form.

• A small set of primitives, the protection primitives, forms the process interface of the
protection system. These primitives make it possible to create new master passwords,
to delete the existing master passwords, to allocates memory areas and segments,
and to load segment pointers into the pointer registers.

The following is a summary of the main results we have obtained:

• Taking advantage of the global function, a single master password is sufficient to
generate the passwords for the areas of a given subject, and for an unlimited number
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of segments in these areas, with the desired access authorizations. This is a solution
to both the password proliferation and the password weakening problems.

• A subject that holds a pointer for a given area can generate pointers for segments
of arbitrary lengths within the boundaries of this area. This is a solution to the
password reduction problem.

• If master passwords are large, sparse, and chosen at random, the processing time
cost for a fraudulent subject to guess a valid master password value to forge an area
pointer by a brute force attack can be prohibitive. Transformation of a pointer for a
given segment into a valid pointer for an area enclosing this segment is prevented by
the non-invertibility property of the global function.

• The ability to delete the master passwords supports the review and revocation of
access authorizations. The resulting revocation mechanism possesses interesting
properties; it is transitive, independent, and delayed.

APPENDIX A

This appendix is aimed at illustrating the actions caused by the execution of each protection
primitive. To simplify the presentation, we shall omit the details concerning well known
activities, e.g. the generation of area and segment pointers (see Section 3.2), and extended
pointer validation (see Section 3.3).

M ← createMasterPassword(wcreate)

1. Quantity wcreate is validated; it should be the value of the special password that
grants special access right create. If this is not the case, execution generates a
protection exception, and fails.

2. The identifier M and the value m of a new master password are generated, and are
inserted into a free entry of the master password table. Quantity M is returned to
the caller.

In step 2, a simple method to generate master password identifiers is a sequential generation.
A master password counter is set to 0 as part of the activities related to system initialization.
The identifier of the new master password is taken from this counter, and then, the value of
the counter is incremented by 1. Master password values should be generated at random,
sparse, and large, according to the security requirements of the system.

deleteMasterPassword(wdelete, M)

1. Quantity wdelete is validated; it should be the value of the special password that
grants special access right delete. If this is not the case, execution generates a
protection exception, and fails.
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2. The master password table is accessed, and the entry reserved for master password
M is cleared.

Pa ← newArea(wnew, M, descra)

1. Quantity wnew is validated; it should be the value of the special password that grants
special access right new. If this is not the case, execution generates a protection
exception, and fails.

2. The master password table is accessed to find the entry reserved for primary password
M . The value m of this primary password is extracted from this entry.

3. Area pointer Pa = (M, da, descra) referencing the new area a is assembled by using
relation da = fdescra(m) (see Section 3.2). This area pointer is returned to the caller.

Ps ← newSegment(Pa, descrs)

1. The master password table is accessed to find the entry reserved for master password
M specified by area pointer Pa = (M, da, descra). The value m of this primary
password is extracted from this entry.

2. Relation da = fdescra(m) is used to validate Pa (see Section 3.3). If validation is
unsuccessful, execution generates a protection exception, and fails.

3. Area descriptor descra = (ba, ga) and segment descriptor descrs = (bs, gs, zs) are
considered to verify that inclusion condition bs + gs ≤ ga is verified, that is, the new
segment is completely contained within the boundaries of area a (see Section 3.1 and
Figure 1). If this is not the case, execution generates an addressing exception, and
fails.

4. Segment pointer Ps = (M, ds, descra, descrs) referencing the new segment s is as-
sembled by using relation ds = fdescrs(da) (see Section 3.2). This segment pointer is
returned to the caller.

loadPointerRegister(Ps, i, mask)

1. Segment pointer Ps = (M, ds, descra, descrs) is considered, where descra = (ba, ga)
and descrs = (bs, gs, zs). The master password table is accessed to find the entry
reserved for master password M . The value m of this master password is extracted
from this entry.

2. Relation ds = fdescrs(fdescra(m)) is used to validate segment password ds in Ps (see
Section 3.3). If validation is unsuccessful, execution generates a protection exception,
and fails.

3. Internal descriptor (ba + bs, gs, zs ∧mask) is constructed, and is finally loaded into
pointer register Pi.
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