
– 1 –

Memory protection in embedded systems
Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56126 Pisa, Italy
E-mail: l.lopriore@iet.unipi.it

Abstract — With reference to an embedded system featuring no support for memory manage-
ment, we present a model of a protection system based on passwords and keys. At the hardware
level, our model takes advantage of a memory protection unit (MPU) interposed between the
processor and the complex of the main memory and the input-output devices. The MPU sup-
ports both concepts of a protection context and a protection domain. A protection context is a
set of access rights for the memory pages; a protection domain is a set of one or more protection
contexts. Passwords are associated with protection domains. A process that holds a key match-
ing a given password can take advantage of this key to activate the corresponding domain. A
small set of protection primitives makes it possible to modify the composition of the domains
in a strictly controlled fashion.
The proposed protection model is evaluated from a number of salient viewpoints, which include
key distribution, review and revocation, the memory requirements for storage of the information
concerning protection, and the time necessary for key validation.

Keywords: access right; embedded system; protection; revocation.

1. INTRODUCTION

We shall refer to a typical embedded system architecture featuring a microprocessor inter-

facing both volatile and non-volatile primary memory devices, as well as a variety of input/out-

put devices including sensors and actuators. In a system of this type, no provision is usually

made for a memory management unit translating the virtual addresses generated by the proces-

sor into physical addresses in the primary memory [6], [14]. This situation is not likely to

change in the near future; instead, advances in integration technologies will presumably be ex-

ploited to reduce system cost and size, rather than to introduce sophisticated forms of storage

space addressing and management [5], [17].

In a system featuring no form of virtual to physical address translation, a single address

space is shared by all processes; the meaning of an address is unique and is independent of the

process that generates this address [10], [19], [22]. In fact, the two aspects, addressing and

protection, are unified in the multiple address space model, and are kept separated in a single

address space environment [2]. This facilitates data sharing between processes and interprocess

interactions. In particular, two or more processes sharing a given data item will simply use the

address of this data item, which is unique throughout the system. On the other hand, an errone-

ous or deliberately harmful process is not prevented from accessing and possibly corrupting the

private information items of a different process or even the kernel [11], [28]. In a situation of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/54924257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– 2 –

this type, provision of mechanisms for the protection of the private information is highly desir-

able [7], [14], [21], [30].

This requirement for memory protection extends to the components of the same given pro-

cess. In fact, embedded system programming is a challenging task, as a consequence of the

stringent limitations in terms of available memory, the multiplicity of different classes of sen-

sors and actuators, the requirements for concurrency and real-time response, and the limited

support for program debugging. Ideally, the principle of least privilege [24], [26] should be

followed, according to which each software module should be given the ability to access only

those memory areas that are indispensable for that software module to carry out its job.

1.1. Access privilege specification

In every protection system model, a salient problem is the specification of the access rights

held by each active entity (subject) on the passive entities (objects) of the system [25]. A pro-

tection domain is a set of access rights for the protected objects. When a given subject is exe-

cuted, it is associated with a protection domain that states the objects that this subject can access

and the operations it can accomplish on these objects.

A subject is any software entity that can generate memory accesses; thus, a subject can be

a scheduled computation (process) as well as, in an event-driven environment, an execution

activity generated by a hardware interrupt (interrupt handler) [5], [17]. To simplify the presen-

tation, without loss of generality, in the following we shall refer to a process-oriented environ-

ment.

In our protection model, the memory address space is logically partitioned into fixed-size

pages, and the memory pages are the protected objects. Access right read for a given page

makes it possible to access the page for read; this is similar to access right write for write ac-

cesses and to access right execute for the execution of the page contents (supposedly, machine

code). A protection domain is the specification of a set access rights for the memory pages. In

the following, we shall hypothesize that input/output devices are mapped into the single address

space, so that the mechanisms for memory protection also apply to the internal registers of the

peripheral units.

When a new process is started up, it is associated with an initial domain, and execution

begins in this domain. When a process switch takes place (the active process releases the pro-

cessor and a new process is assigned to the processor) the domain of the new process is acti-

vated. An important aspect is that activation of a new domain can take place even in the execu-

tion of a single process, as follows from to the evolution of the control flow of that process.

– 3 –

This will be the case, for instance, when execution of a software component is started up; con-

gruently with the principle of least privilege, the composition of the new domain will reflect

the memory access requirements of the new component. In this way, if an erroneous software

module causes an illegal access attempt to a memory area external to its own protection domain,

an exception of violated protection is raised, which reveals the error and limits its consequences.

1.2. Passwords and keys

In a classical protection paradigm, one or more passwords are associated with every given

protected object; each password corresponds to an access privilege expressed in terms of a sub-

set of the access rights defined by the type of that object [2], [10], [20], [23]. A process aimed

at accessing a given object must present a key for this object. The access terminates successfully

only if this key matches one of the passwords associated with the object, and the access privi-

lege corresponding to this password includes an access right permitting the access; if this is not

the case, an exception of violated protection is raised and the access terminates with failure.

In this work, we shall refer to a variant of the classical password paradigm whereby each

password is associated with a protection domain instead of a single protected object. In our

page-oriented protection environment, this means that a single password may grant access per-

missions to several memory pages. A software component that holds a key matching a password

for a given domain is entitled to access all the memory pages included in this domain, according

to the respective access rights. When execution of a software component begins, it presents a

key to the protection system. The password matching this key is found, and the corresponding

protection domain is determined. The software component will be executed with the access

rights for the memory pages that are part of this protection domain.

A salient aspect of the password approach to object protection is that keys do not need to

be segregated in protected memory regions [20], [23]; instead, they can be freely mixed with

ordinary data and can be manipulated by the usual machine instructions for data processing. In

fact, if passwords are large and chosen at random, the probability of guessing a password and

forge a valid key is vanishingly low. In particular, keys can be freely transmitted between soft-

ware components, and in this case, the recipient of a key will be in a position to activate the

corresponding domain and use this domain for its own memory accesses. An aspect related with

key distribution is key derivation, whereby a key for a given domain is transformed into a key

for a different, possibly (but not necessarily) weaker domain, e.g. with a few pages excluded,

or restricted access rights. Key derivation can be necessary, for instance, for distribution of

limited access permissions between software modules.

– 4 –

Simplicity in key distribution, obtained by a simple action of a key copy, implies that the

recipient of a key is free to distribute this key to other subjects. Thus, keys tend to spread over

the entire memory system. A related problem is that of the revocation of access privileges. The

protection system should incorporate mechanisms that make it possible to reduce the set of

access rights corresponding to a given key. It should also be possible to revoke the key, so that

it is not viable to use key derivation to circumvent revocation.

In this work, we shall present a model for a hardware/software complex designed to imple-

ment a protection environment based on passwords and keys. At the hardware level, a memory

protection unit (MPU) is interposed between the processor and the memory and input/output

devices (Figure 1). The MPU intercepts the memory addresses generated by the processor and

uses its own internal registers to ascertain whether the current memory access is authorized; if

this is not the case, the MPU inhibits the access and generates an interrupt request to the pro-

cessor. At the software level, our protection environment implements a system of passwords

and keys that supports key distribution and derivation as well as key revocation.

The rest of this paper is organized as follows. Section 2 introduces the memory protection

unit in the form of a low-cost addition to the hardware of the microcontroller. Section 3 presents

the mechanisms for password generation and key derivation, and delineates the association of

passwords with protection domains. Section 4 introduces a set of primitives of the protection

system, the protection primitives, which make it possible to activate a domain, and to modify

the composition of the domains in a strictly controlled fashion. Section 5 discusses the proposed

protection model from a number of salient viewpoints, which include the memory requirements

for storage of the information concerning protection, the time necessary for key validation, the

review and revocation of access privileges, and the cost of the proposed MPU in terms of addi-

tional hardware. Section 6 describes the relation of our work to previous work. Section 7 gives

concluding remarks.

Figure 1. Memory protection unit interposed between the processor and the complex of the memory and in-
put/output devices.

– 5 –

2. THE MEMORY PROTECTION HARDWARE

As anticipated in Section 1, in our protection system the memory pages are the elementary

units of information on which protection is exercised. We have defined a protection domain as

a set of read, write and execute access rights for a collection of memory pages; this definition

can be extended and refined in terms of subdomains that we call protection contexts. Both the

concepts of a protection context and a protection domain are supported at the hardware level

by memory protection circuitries that we collectively call the memory protection unit (MPU).

In detail, the MPU implements a limited number c of protection contexts, as follows. A set

of registers, the context registers CR0, CR1, …, is associated with the memory pages, one con-

text register for each page. Context register CRi associated with page Pi is partitioned into three

context fields (Figure 2). The read context field consists of c bits; the j-th bit, if asserted, indi-

cates that the j-th protection context includes access right read for page Pi. This is similar to the

write context field for access right write, and to the execute context field for access right exe-

cute. Thus, the bits in the j-th position of the three context fields of CRi collectively identify the

access rights included in the j-th protection context for page Pi. The composition of protection

context j is determined by the contents of all context registers for this protection context.

Thus, for instance, in an MPU configuration featuring four protection contexts (c = 4), the

size of a context register is 12 bits. If the configuration of context register CRi is (0011 0010

0100), then for page Pi context 0 includes access right read, context 1 includes both access

rights read and write, context 2 includes access right execute, and context 3 includes no access

right at all.

A protection domain is a set of one or more protection contexts. At any given time, the

Figure 2. Configuration of context register CRi associated with page Pi. The bits in the j-th position of the three
context fields together identify the access rights for Pi included in the j-th protection context. Domain register
DR selects the contexts that form the active domain.

– 6 –

active domain is the protection domain associated with the process being executed at that time

(the active process). A c-bit internal register of the MPU, the domain register (DR), features a

bit for each protection context. The composition of the active domain in terms of protection

contexts is determined by the contents of the domain register. If the j-th bit of this register is

asserted, then the active domain includes the j-th context. The access rights in the active domain

are the union of the access rights in all the protection contexts selected by the domain register.

In the foregoing example, if domain register DR contains quantity 0010, then the active

domain is formed by a single protection context, CR1, that is, for page Pi, it includes access

rights read and write. If DR contains quantity 0101, the active domain is formed by protection

contexts CR0 and CR2, that is, for page Pi, it includes access rights read and execute.

The configuration of the protection contexts in terms of access rights is stated at the global

level and is the same for all processes. Instead, protection domains are configured in terms of

sets of protection contexts at the process level. At any given time, the active process can ac-

complish those memory accesses that are made possible by the access rights in the active do-

main. When a process switch takes place (the active process releases the processor and a new

process is assigned to the processor), the contents of the domain register are saved into the

descriptor of the active process, and the domain register is filled with quantities taken from the

descriptor of the new process.

3. PASSWORD CHAINS

A function F(x) is one-way if it is easy to compute but hard to invert [12], [15]. This means

that given a value x, quantity F(x) can be computed at little effort, but given a value y it is

computationally unfeasible to determine a value x such that y = F(x). A one-way chain is a

sequence of values x0, x1, …, xv-1, where x0 is the seed and each xi is the result of the evaluation

of a one-way function F on the previous value, i.e. xi = F(xi-1) for 0 < i ≤ v - 1. Let Fn(x) denote

the result of n successive applications of function F on x, e.g. F2(x) = F(F(x)). We have x1 =

F(x0), x2 = F2(x0), …, xv-1 = Fv-1(x0).

A function H(x, p) is a parametric one-way function if given a value z and a parameter p,

it is computationally unfeasible to determine a value x such that z = H(x, p) [32]. An example

of practical implementation is H(x, p) = G(Ex(p)) where G is a hash function and Ex(p) denotes

the encryption of p using symmetric cipher E with key x. Thus, a parametric one-way function

corresponds to a collection of one-way functions, a one-way function for each value of the

parameter.

– 7 –

 In our protection environment, a parametric one-way function H and different parameters

can be effectively used to generate the passwords and organize them into one-way chains called

password chains, as follows. A function H is chosen at system generation time. When a process

Q is created, a new parameter is reserved for Q and is used to derive a one-way function FQ

from H; this function is associated with Q, and will never be used for a different process. A new

password chain is generated for Q, and the length m (i.e. the number of passwords) of this chain

is part of the process design. To setup the password chain, a seed is chosen at random; the seed

is called the master password of process Q, and is denoted by w0. The subsequent passwords

w1, w2, …, wm-1 of process Q are derived from the master password by consecutive applications

of one-way function FQ; we have w1 = FQ(w0), w2 = FQ(w1), …, wm-1 = FQ(wm-2). Function H is

universally known, and the value of the parameter for process Q is only known to Q; this means

that Q is the only process that can take advantage of FQ. As will be shown shortly, this is an

important factor in password derivation and distribution.

3.1. Protection domains

Each password is associated with a protection domain. This association is recorded in a

system table, called the password table, featuring one entry for each existing password. The

entry for a given password specifies the domain associated with that password in terms of a

configuration of the domain register. Efficiency considerations suggest that the password table

should be split into several tables, one table for each password chain; this issue will be investi-

gated in depth in Section 5.1.

A software component that holds a key matching a given password can take advantage of

this key to activate the protection domain associated with this password. In detail, when the key

is presented to the protection system, a search is made in the password table for an entry con-

taining a password matching that key. If this search is successful, the corresponding domain

configuration is extracted from this entry and is loaded into the domain register.

The composition of the domain corresponding to a password assigned to a given software

component will be expressed by a configuration of the domain register that will be decided in

accordance with the specific access privilege requirements of this software component, as fol-

lows from application of the principle of least privilege.

Let us consider, for instance, a domain organization representing domains by concentric

protection rings [27]. The most external ring is the least privileged and usually has the highest

ring number, the central ring is the most privileged and is usually numbered 0, and each inter-

mediate ring is more privileged than the outer rings. In our protection environment, an m-ring

– 8 –

protection model corresponds to a password chain w0, w1, ..., wm-1 of length m, in which master

password w0 corresponds to the central ring, the i-th password wi corresponds to the i-th ring,

and the m-th password wm-1 corresponds to the most external ring. A software component de-

signed to be executed in the i-th protection ring holds a key matching password wi. The associ-

ation of protection contexts with domains is incremental: the domain associated with password

wi (ring i) is obtained by adding one or more protection contexts to the domain associated to

password wi+1 (ring i + 1), so that, for instance, the domain associated with password w0 (ring

0) includes the protection contexts of the domains associated with all the subsequent passwords

w1, w2, ..., wm-1.

The protection ring model is an example of a hierarchical domain organization; this is not

a requisite for password chains. Consider, for instance, a process consisting of two software

components: a first component writes executable machine code into a memory page P, and this

machine code is actually executed by the other component. In the password chain, the first

password will be reserved for the first component and the domain associated with this password

will include access right write for page P. The second password will be reserved for the second

component, and the corresponding domain will include access right execute for P. Indeed, in

this application, the protection domains are not hierarchical.

3.2. Key distribution and derivation

A process that holds a given key k can distribute this key to another process by a simple

action of a key copy. In this way, the second process acquires the access rights in the protection

domain associated with the password matching k.

Let w0, w1, … be the passwords in the password chain of process Q, and let FQ be the one-

way function associated with Q and used to generate the password chain. If k matches password

wi, Q may even distribute a key k’ derived from k, i.e. k’ matches a password wi+j that follows

wi in the password chain. To this aim, Q applies one-way function FQ iteratively j times to k to

obtain k’, as follows from relation wi+j = FQ(wi+j-1) = FQ2(wi+j-2) = … = FQj(wi).

Of course, process Q is not in a position to derive a key matching a password that precedes

password wi in the password chain. This is a consequence of the fact that function FQ is one-

way, and is computationally not invertible. Furthermore, process Q cannot apply key derivation

to a key, received from a different process, which is part of a different password chain, as in

this case Q does not possess the one-way function necessary for key derivation (if Q uses its

own one-way function FQ, the result will be meaningless).

– 9 –

In summary, a one-way function FQ is associated with process Q when this process is cre-

ated. In an implementation that uses a parametric-one-way function H, a result of this type will

be obtained by reserving a value p of the parameter for Q. FQ is used to generate a password

chain w0, w1, …, wm-1, where m is specific to Q. The values of the passwords in this password

chain are inserted into the password table; each password will be associated with a domain

configuration whose composition in terms of protection contexts is part of the process design.

Finally, quantity p, the value w0 of the master password, and the initial configuration of the

domain register are inserted into the descriptor of process Q. When execution of Q is subse-

quently started up, the initial configuration of the domain register is loaded from its process

descriptor.

4. PROTECTION PRIMITIVES

The protection system defines a set of primitives, the protection primitives, which allow us

to activate a domain, and to modify the composition of the domains in a strictly controlled

fashion (Table I). We shall now present these primitives and the actions involved in the execu-

tion of each of them. These primitives are designed to be fully implemented at software level

by kernel routines. These routines run in the privileged state, as is necessary to access the in-

ternal registers of the MPU and the password table, which are part of the memory regions re-

served for the kernel.

4.1. Domain activation

The activate() protection primitive makes it possible to switch from the current domain to

the protection domain corresponding to a given key k. This primitive has the form

activate(k)

Table I. Protection primitives.

activate(k)
Activates the domain associated with the password matching key k.

grant(k, i, msk)
In the active password chain, adds each protection context specified by msk to the domain associated with
the i-th password, provided that this context is part of the domain associated with the master password. Fails
if k does not match the master password.

revoke(k, i, msk)
In the active password chain, removes each protection context specified by msk from the domain associated
with the i-th password, provided that this context is part of the domain associated with the master password.
Fails if k does not match the master password.

k’ ← deriveKey(k, j)
Returns the a key k’ matching the j-th password following the password matching key k in the active pass-
word chain.

– 10 –

Its execution produces a search in the password table for a password w matching key k. If this

search is successful, the domain configuration corresponding to w is extracted from the pass-

word table and is loaded into domain register DR.

As an example of application, let us consider a process Q whose password chain consists

of master password w0 and a second password w1, let k0 and k1 be keys matching these pass-

words, let D0 and D1 be the protection domains corresponding to these passwords, and let DR0

and DR1 denote the domain register configurations for these domains. Suppose that process Q

consists of a main program M, designed to be executed in domain D0, and a software component

C designed to be executed in domain D1. If, for instance, D1 is a subset of D0 (that is, it consists

of a subset of the contexts that form D0), then execution of component C will be started up with

reduced access privileges, congruently with the activities to be carried out by this component,

as follows from application of the principle of least privilege. When process Q is created, quan-

tity DR0 is stored into the process descriptor; this quantity will be loaded from the process de-

scriptor into the domain register when execution of Q begins, thereby activating domain D0, as

is required for the execution of main program M. Subsequent execution of component C will

be preceded by a call to activate(k1), which loads quantity DR1 from the password table into the

domain register, thereby causing a switch from domain D0 to domain D1. At the end of execu-

tion of C, a call to activate(k0) will be used to return to domain D0.

4.2. Domain composition

Two primitives, called grant() and revoke(), make it possible to alter the composition of

the domains in terms of protection contexts. These primitives make it possible to access the

contents of the password table to modify these contents in a strictly controlled fashion. Let us

consider a component of the active process that holds a key for the master password of the

password chain of this process (the active password chain). This software component can take

advantage of these primitives to modify the protection domains associated with the subsequent

passwords in the active password chain, by adding or removing the protection contexts that are

included in the domain associated with the master password.

In more detail, let Q be the process of the software component executing grant(), and let

w0, w1, … be the passwords in the password chain of Q. Furthermore, let D0 and Di be the

domains associated with master password w0 and password wi, and let DR0 and DRi denote the

domain register configurations for these domains. The grant() primitive has the form

grant(k, i, msk)

Argument k is a key for master password w0, argument i identifies password wi, and argument

– 11 –

msk is a bit configuration of the same size as the domain register. For each bit in msk that is

asserted, execution of this primitive adds the corresponding protection context to domain Di,

provided that this context is part of domain D0. Execution of this primitive reads domain register

configurations DR0 and DRi from the entries of the password table corresponding to w0 and wi.

The new value of DRi is computed by setting the bits that are asserted in both DR0 and msk.

Finally, the result is written back into the password table entry for wi. Execution of this primitive

fails if key k does not match master password w0.

The revoke() primitive is as follows:

revoke(k, i, msk)

Arguments k, i and msk are the same as in the grant() primitive. For each bit in msk that is

asserted, execution of this primitive removes the corresponding protection context from domain

Di, provided that this context is part of domain D0. Execution of this primitive reads quantities

DR0 and DRi from the password table. The new value of DRi is computed by clearing the bits

that are asserted in both DR0 and msk; the result is written back into the password table. Execu-

tion fails if key k does not match master password w0.

4.3. Key derivation

A further protection primitive, the deriveKey() primitive, is used for key derivation. Let Q

be the process of the software component executing deriveKey(), let w0, w1, … be the passwords

in the password chain of Q, and let FQ be the one-way function associated with Q and used to

generate the password chain. The deriveKey() primitive has the form

k’ ← deriveKey(k, j)

The arguments are a key k and an index j, called the derivation index. Let wi be the password

matching key k, and let wi+j denote the j-th password following wi in the active password chain.

This primitive returns a key k’ matching password wi+j. This password is obtained from wi by

applying function FQ iteratively j times, as follows from relation wi+j = FQ(wi+j-1) = FQ2(wi+j-2) =

… = FQj(wi). This primitive cannot be used for a key derivation starting from a key k matching

a password that is not part of the active password chain, as it uses one-way function FQ (the

result would be meaningless).

5. DISCUSSION

5.1. Considerations concerning performance

As anticipated in Section 3.1, efficiency considerations suggest splitting the password table

into several tables, one table for each password chain. Let w0, w1, …, wm-1 be the password

– 12 –

chain of process Q, where quantity m is specific to Q. We shall denote the corresponding pass-

word table by PTQ. This table features m entries; the i-th entry contains password wi and the

specification of the domain associated with this password, expressed in terms of a configuration

of domain register DR.

In this implementation of the password table, a key assumes the form of pair (k, Q), where

k is a key value and Q indicates a process. This means that the password matching quantity k is

part of the password chain of process Q and consequently, the corresponding domain configu-

ration will be contained in password table PTQ. Of course, with respect to an implementation

featuring a single password table for all processes, significant advantages follow in terms of the

processing time required for key validation. The expected number of key-password compari-

sons to find the password matching a given key is (m + 1) / 2. On the other hand, the memory

cost for key storage is increased by the necessity to include quantity Q in the representation of

a key. In low power microcontroller, the overall application memory layout is simple and quite

static [31], so that up to 256 individual software activities can be reputed a good trade-off be-

tween usability and memory cost. In this hypothesis, the memory requirement for storage of

quantity Q is one byte, and is low.

The time necessary for key validation can be reduced to a single key-password comparison

if each key is stored in the form of a triple (k, Q, i) where k is the key value, Q indicates a

process, and i is the index of the password wi matching k in the password chain of process Q,

which is equal to the index in password table PTQ of the entry reserved for wi. Of course, if the

contents of the i-th entry of PTQ do not match quantity k, key validation fails. Time efficiency

is improved at the expense of the increased memory size of a key, as is required to store quantity

i; if the length of a password chain is up to 16 passwords, four bits will be sufficient, so the

additional memory cost is negligible.

A further space-time tradeoff can be conceived whereby less space is necessary for storage

of the password table but the cost in terms of processing time for key validation increases. In

this new approach, for process Q, we maintain the value of a single password, that is, master

password w0. The password table assumes the form of a domain table featuring one entry for

each password in the password chain of Q; the i-th entry contains the specification of the domain

associated with the i-th password wi, expressed in terms of the corresponding configuration of

the domain register. When key (k, Q, i) is presented for validation, password wi is evaluated by

iteratively applying one-way function FQ to w0, as follows from relation wi = FQ(wi-1) = FQ2(wi-2)

=… = FQi(w0). If quantity k matches password wi, evaluated in this way, then key validation is

successful; the specification of the domain corresponding to k is extracted from the i-th entry

– 13 –

of the domain table. Of course, in this approach the space necessary for password storage is

kept to a minimum, but processor time is necessary to evaluate several passwords at each key

validation. If the length of a passwords chain is m passwords, the expected number of password

evaluations is (m – 1) / 2.

5.2. Access privilege revocation

As shown in Section 3.2, a software component can distribute a key to another software

component by a simple action of a key copy; so doing, the corresponding access privilege is

transmitted to the recipient. As a consequence of this simplicity in access privilege distribution,

access privileges tend to spread throughout the system. A related problem is that of access priv-

ilege revocation; a process should be given the ability to revoke the validity of the keys for the

passwords in its own password chain. In our system, a result of this type can be simply obtained

by changing the one-way function used to construct the password chain. So doing, we replace

all the passwords in the password chain except the master password. An action of this type

invalidates all the keys that match the old passwords.

As seen in Section 3, a parametric one-way function corresponds to a collection of one-

way functions, a one-way function for each value of the parameter. In our system, when a pro-

cess is created, a value of the parameter is chosen at random and is reserved for that process.

Then, the one-way function obtained in this way is used to generate the password chain for the

new process. In an implementation of this type, replacement of the one-way function is simply

obtained by changing the value of the parameter, at low cost in terms of processing time. The

new passwords will be evaluated using the new one-way function; these passwords will be

inserted into the password table.

Despite its simplicity, this key revocation mechanism results to possess several interesting

properties. Revocation is [9]:

• Transitive. If a given key is revoked, the effects of the revocation extend to all the copies

of this key, to all the keys derived from the revoked key and to all their copies, inde-

pendently of the software components holding them. In fact, all the keys are part of the

same password chain, a copy of a given key is indistinguishable from the original, and keys

have no memory of the consecutive copy actions.

• Temporal. The effects of a revocation can be reversed by taking advantage of the same

mechanism used for the revocation. After replacement of the one-way function, the validity

of the old keys can be restored by simply returning to the previous one-way function. In an

– 14 –

implementation using a parametric one-way function, a result of this type is simply ob-

tained by returning to the previous value of the parameter.

• Deferred. A process that activated the domain associated with a given key (e.g. by issuing

the activate() protection primitive to load the corresponding domain configuration into the

domain register) is allowed to continue to use this domain even after this key has been

revoked, until the activation of a new domain. This is a consequence of the fact that revo-

cation involves the one-way function, and does not alter the contents of the domain register.

Deferred revocation is important to avoid that a software component remains in an incon-

sistent state.

• Independent. Two keys matching passwords associated with identical domains, which are

part of different password chains, can be revoked independently of each other. In fact, the

change of the one-way function of a given password chain has no effect on the validity of

the keys matching the passwords in a different password chain, independently of the do-

mains associated with these keys.

The revocation mechanism based on replacement of the one-way function revokes all the

password in the password chain except the master password. Thus, the effects of this mecha-

nism are global for the passwords of the given process, and involve all the keys matching the

revoked passwords, independently of their present location in the memory system and of the

processes that hold these keys. In fact, our protection system is also able to support a form of

local revocation of access rights, to reduce the extent of selected domains. A result of this type

can be obtained by repeated executions of the revoke() protection primitive. In detail, as seen

in Section 4.2, revoke() allows a software component that holds a key matching the master

password of the active password chain to modify the composition of the domain associated with

another password in this password chain, by eliminating protection contexts from this domain.

In this case, too, revocation extends to all the keys matching that password.

5.3. Hardware costs

In a system featuring a memory management unit (MMU) interposed between the proces-

sor and the primary memory system, the MMU is usually aimed at: (i) translating the virtual

addresses generated by the processor into physical addresses in the primary memory; (ii) im-

plementing a virtual memory system (that is, a virtual memory space much larger than the phys-

ical space); and (iii) supporting forms of memory protection and security [8]. Typical MMU

implementations take advantage of a page table stored in the primary memory. The page table

features an entry for each page of the virtual space. The entry for a given virtual page specifies

– 15 –

the number of the corresponding physical page in the primary memory. The physical page num-

ber is paired with the offset to obtain the physical address of the referenced information item.

A salient problem is to avoid that, for each memory access, a second memory access is neces-

sary to inspect the page table. To this aim, the MMU contains an associative cache of the page

table in the form of a translation lookaside buffer (TLB) [13]. When the address translation

circuitry receives a logical address, all the TLB entries are searched simultaneously for the

corresponding physical address. If no match is found in the TLB, the TLB is loaded with quan-

tities taken from the page table in the primary memory. If no free entry is available in the TLB,

the least recently used algorithm is typically used to find an entry to be replaced.

The page table and the TLB are normally used also to enforce forms of memory protection.

Each page is associated with a set of access rights specifying the operations that can be carried

out on this page, and the typical access rights are read, write and execute. When the processor

attempts to access an information item in a given page, the access rights for this page are com-

pared with the type of access. The access is permitted only if the access rights are actually

verified.

When a process switch occurs (the current process releases the processor and a new process

is assigned to the processor) the contents of the TLB are completely invalidated. This is neces-

sary since virtual-to-physical address mapping is different for different processes. Alterna-

tively, each TLB entry is tagged with a process number, and in this case, only the entries rele-

vant to the running process are considered in the address translation.

As anticipated in Section 1, the MMU is a costly component. In particular, the TLB is

characterized by high hardware complexity and high power consumption [3]. In contrast, our

design relies on a memory protection unit whose design takes advantage of the fact that the

composition of the protection contexts in terms of access rights is fixed and independent of the

process. It follows that when a process switch takes place, the contents of the context registers

do not vary. No caching mechanism is necessary to load these contents from the primary

memory. The processor accesses the context registers directly, to initialize them under control

of the operating system. We have obtained this important result by taking advantage of the

concept of a protection domain defined in terms of a collection of protection contexts. The

domain register allows us to specify different protection domains for different processes. As

seen in Section 2, on the occurrence of a process switch, the contents of the domain register are

replaced with the configuration for the new process; this fast action activates the protection

domain of the new process.

We may conclude that, mainly owing to the absence of any form of caching, the hardware

– 16 –

cost of the MPU is low, and is much lower than that of an MMU with the address translation

part removed.

6. RELATION TO PREVIOUS WORK

6.1. The access matrix

In a classical model, the protection system takes the form of a matrix, called the access

matrix, featuring a row for each domain and a column for each object [25]. Element AMi,j of

access matrix AM specifies the access rights included in domain di for object oj. A subject is a

pair (process, domain), that is, it consists of the execution of a given process in a given domain.

When a process switches to a different domain, a new subject is activated. Every access attempt

performed by a subject to a given object must be validated, by verifying that the domain of this

subject includes the access rights that are necessary for successful execution of the access (prin-

ciple of complete mediation [24]). In this model, domains are also protected objects. The access

rights defined for a given domain make it possible to activate that domain and modify its com-

position, for instance.

Different methodologies have been devised for storage of the access matrix [25]. In the

access control list approach, an access control list is associated with each object; the list for a

given object takes the form of a sequence of pairs (domain identifier, access rights), i.e. the

specification of the set of access rights that are included in the given domain. In the capability

list approach, the composition of a protection domain is specified in terms of a list of capabili-

ties. A capability is a pair (object identifier, access rights), i.e. the specification of a set of access

rights for the given object.

6.2. Capabilities and passwords

A salient problem of every capability system is that of capability segregation in memory

[4], [20], [33]: we must prevent a process holding a given capability from taking advantage of

the processor instructions for ordinary data manipulation to modify the composition of this ca-

pability, e.g. tampering with the access right field to obtain an undue amplification of access

rights, or modifying the object identifier field causing the capability to reference a different

object. In the absence of segregation, it is even possible that a process forges a new capability

from scratch.

Several solutions have been devised to the capability segregation problem. In a segmented

memory environment, special segments, which we shall call the capability segments, can be

reserved for capability storage (in contrast, the data segments will be reserved for storage of

– 17 –

ordinary information items). This approach leads to undue complications in the representation

of objects in memory, e.g. at least one capability segment will be necessary for each object, to

store the capabilities for the data segments containing the internal representation of this object.

The processor instruction set needs to be enlarged to include ad-hoc instructions for capability

processing (the capability instructions). Alternatively, in a system supporting a form of tagged

memory, a tag associated with each memory cell will specify whether this cell contains a capa-

bility or an ordinary information item. In this case, too, the instruction set of the processor will

be expanded to include the capability instructions. If one of these instructions is executed on a

cell that is not tagged to contain a capability, an exception of violated protection is raised inside

the processor and the memory access is inhibited. Contrary to the requisite of hardware stand-

ardization, this approach requires specialized memory banks aimed at storing the cell tags.

Passwords capabilities [1], [20] are an important improvement on the capability concept.

In the password capability approach, a set of passwords is associated with each object, and each

password corresponds to a set of access rights. A password capability is a pair (object identifier,

password); it grants its holder the access rights for the specified object that are associated with

the password. If passwords are large and randomly distributed, the probability to guess a valid

password to forge a password capability is vanishingly low. It follows that password capabili-

ties can be stored in undifferentiated memory cells, and can be mixed in memory with ordinary

information items. As such, they are an effective solution to the segregation problem.

Our protection system embodies a variant of the password capability approach, in which

the protected objects are the memory pages and the protection domains, and a capability takes

the form of a password. Each password is associated with a domain, and the access rights for

the memory pages corresponding to the given password are those included in this domain.

6.3. Derivation

In capability systems, the instruction set usually includes one or more instructions support-

ing forms of capability derivation in the direction of weaker access rights, i.e. to reduce the

extent a given capability by eliminating part of the access rights it contains. The access right

field of a capability can be effectively codified by reserving a bit for each access right; this bit

is set if the access right is present. In this case, capability derivation is simply obtained by

clearing the bits corresponding to the access rights to be eliminated.

In contrast, in a password capability environment, derivation is a complex action that im-

plies a password replacement; the new password will correspond to the reduced set of access

rights. To this aim, a software component is necessary, that we shall call the password manager.

– 18 –

A process aimed at reducing a given password capability will transfer this password capability

to the password manager. In turn, the password manager will return a new password capability

expressed in terms of the weaker password.

As seen in Section 4.3, in our system processes can produce the effect of a password deri-

vation autonomously, by issuing the deriveKey() primitive that takes advantage of the compo-

sition of the password chains. No form of password manager is necessary. Significant ad-

vantages follow in terms of effectiveness and simplicity in object implementation.

6.4. Access privilege revocation

Different solutions have been proposed to the problem of access privilege revocation in

capability-based protection environments. For instance, in [29], forms of selective revocation

are obtained by taking advantage of access indirection. To this aim, a reference monitor is in-

terposed between the holder of an access privilege for a given protected resource and the re-

source. The resource owner controls revocation by interacting with the reference monitor. In

[16], a form of automatic, global revocation is proposed that takes advantage of short capability

lifetimes to enforce capability expiration. Non-revoked capability renewal is supported. In [9],

a capability propagation graph is constructed by recording the propagation of a capability from

subject to subject, as the system runs. To exercise revocation, the graph is inspected to find the

identity of all subjects that hold capability copies. All these solutions are prone to affect perfor-

mance in capability management negatively. They tend to subvert the main advantage of the

capability protection paradigm, i.e. simplicity of access right transmission between processes,

which was among the original motivations for the introduction of the concept of a capability

[18].

In the password capability model, access right revocation can be effectively obtained by

replacing the value of a password with a new value. This action invalidates all the password

capabilities expressed in terms of the replaced password. Furthermore, a form of partial revo-

cation can be obtained by reducing the extent of a given password in terms of the access rights

associated with that password.

As seen in Section 5.2, in our system two different mechanisms support access privilege

revocation. If we change the one-way function used to construct the password chain of a given

process, we invalidate all the passwords in that password chain except the master password. In

an implementation taking advantage of a parametric one-way function, replacement of the one-

way function is simply obtained by changing the value of the parameter. This action will be

followed by a new evaluation of the passwords in the password chain; the new passwords will

– 19 –

be inserted into the password table. Furthermore, we can modify the composition of the domain

associated with a given password by eliminating protection contexts from this domain; a result

of this type will be obtained by issuing the revoke() protection primitive. As seen in Section

4.2, the cost of an action of this type in terms of execution times is extremely low, as it only

implies an access to the password table to modify the bit configuration expressing the domain

to be reduced.

6.5. Ad-hoc hardware for memory protection

Ad-hoc hardware solutions to enforce forms of mandatory isolation of individual software

activities in embedded systems have been the object of a few studies in the past. In [14], a

memory map checker is proposed, designed to be logically interposed between the processor

and the memory modules. The address space of the microcontroller is partitioned into fixed-

size blocks, which are grouped to form segments allocated to protection domains, statically at

compile time or dynamically through a memory heap. The memory map checker captures the

memory write signals from the processor, and actually accesses the main memory only if the

write address is valid. No mechanism prevents a software module from corrupting its own state,

as each module resides completely within the boundaries of a single protection domain.

In [7], attacks to manipulate the flow of control are considered with special reference to

embedded systems. A hardware solution is presented that supports a division of the stack into

a data stack and a control flow stack. The control flow stack is aimed at storing the return

addresses; this stack is hosted in a memory module at a location different from that of the data

stack. Hardware mechanisms prevent accidental or deliberately harmful modifications of the

contents of the control flow stack. In particular, access to this stack is restricted to the call and

return instructions; as a result, return addresses on the stack are protected from being overwrit-

ten with arbitrary data.

In [31], it is assumed that in a low power microcontroller the overall application memory

layout is simple and quite static, suggesting a trade-off between hardware cost and usability to

fix the maximum number of individual software activities. A protection scheme is proposed

that takes advantage of a memory protection unit implementing a segmented view of the address

space. The MPU acts on the enable signal of the memory and input-output devices to block a

data transfer physically, if an access violation is detected. The rationale for segmentation is to

permit a flexible memory layout, e.g., in a memory-mapped view of input-output devices, to

protect the small memory areas corresponding to the internal registers of these devices. How-

ever, complexity of the MPU hardware is increased, in particular, by the necessity to maintain

– 20 –

an associative segment lookup table for storage of the segment descriptors.

7. CONCLUDING REMARKS

With reference to an embedded system featuring no support for memory management, we

have presented a model of a protection system based on passwords and keys. Our model takes

advantage of a memory protection unit interposed between the processor and the complex of

the main memory and the input-output devices. The MPU supports both concepts of a protection

context and a protection domain. A protection context is a set of access rights for the memory

pages; a protection domain is a set of one or more protection contexts. In contrast to the classical

approach that associates passwords with protected objects, we associate passwords with pro-

tection domains. A process that holds a key matching a given password can take advantage of

this key to activate the corresponding domain. A simple set of protection primitives makes it

possible to modify the composition of the domains in a strictly controlled fashion. Passwords

are organized in one-way chains called password chains, and associated with processes.

We have obtained the following results:

• The hardware cost of the MPU is low, e.g. much lower than that of a traditional memory

management unit with the memory translation hardware removed. This is mainly a conse-

quence of the fact that the composition of the protection contexts in terms of access rights

is fixed for all processes. It follows that when a process switch takes places, only the do-

main register needs to be updated; the contents of all the other MPU registers are left un-

altered, and no caching mechanism is necessary to restore the protection state of the new

process.

• The organization of the passwords into password chains makes key derivation possible,

whereby a software component that possesses a key matching a given password in the ac-

tive password chain can derive and distribute keys matching the subsequent passwords. No

intervention of a form of password manager is necessary for key derivation.

• An effective form of key revocation is supported. By changing the one-way function used

to generate the active password chain, we change all the passwords in this password chain

except the master password. Consequently, all the keys matching the old passwords are

invalidated. This key revocation mechanism results to be transitive, temporal, deferred and

independent.

• Trade-offs are possible between the memory requirements for storage of keys and the pass-

word table, and the time necessary for key validation. If the password table is split into

– 21 –

several tables, one table for each password chain, and each key includes the name of the

process and the position of the corresponding password in the password chain, a single

key-password comparison is sufficient for password validation. In a password table, the

space necessary for password storage can be reduced to a single password, i.e. the master

password, but in this case, we have to re-evaluate several passwords at each action of key

validation.

ACKNOWLEDGMENT

This work has been partially supported by the TENACE PRIN Project (Grant no.

20103P34XC_008) funded by the Italian Ministry of Education, University and Research.

REFERENCES

[1] M. Anderson, R. D. Pose, C. S. Wallace, “A password-capability system,” The Computer Journal,
vol. 29, no. 1 (1986), pp. 1–8.

[2] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska, “Sharing and protection in a single-
address-space operating system,” ACM Transactions on Computer Systems, vol. 12, no. 4 (1994),
pp. 271–307.

[3] J.-H. Choi et al., “A low power TLB structure for embedded systems,” Computer Architecture
Letters, vol. 1, no. 1 (2002).

[4] M. de Vivo, G. O. de Vivo, L. Gonzalez, “A brief essay on capabilities,” SIGPLAN Notices, vol.
30, no. 7 (July 1995), pp. 29–36.

[5] A. Dunkels, B. Grönvall, T. Voigt, “Contiki - a lightweight and flexible operating system for tiny
networked sensors,” Proceedings of the First IEEE Workshop on Embedded Networked Sensors,
Tampa, Florida, USA, November 2004, pp. 455–462.

[6] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, H. Shin, “Scratchpad memory management
techniques for code in embedded systems without an MMU,” IEEE Transactions on Computers,
vol. 59, no. 8 (August 2010), pp. 1047–1062.

[7] A. Francillon, D. Perito, C. Castelluccia, “Defending embedded systems against control flow
attacks,” Proceedings of the First ACM Workshop on Secure Execution of Untrusted Code,
Chicago, Illinois, USA, November 2009, pp. 19–26.

[8] B. Furht, V. Milutinovic, “A survey of microprocessor architectures for memory management,”
Computer, vol. 20, no. 3 (March 1987), pp. 48–67.

[9] V. D. Gligor, “Review and revocation of access privileges distributed through capabilities,” IEEE
Transactions on Software Engineering, vol. SE-5, no. 6 (November 1979), pp. 575–586.

[10] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, J. Liedtke, “The Mungi single-address-space
operating system,” Software — Practice and Experience, vol. 28, no. 9 (July 1998), pp. 901–928.

– 22 –

[11] N. Ho, A. V. Dinh-Duc, “MemMON: run-time off-chip detection for memory access violation in
embedded systems,” Proceedings of the 2010 Symposium on Information and Communication
Technology, Hanoi, Vietnam, August 2010, pp. 114–121.

[12] Y.-C. Hu, M. Jakobsson, A. Perrig, “Efficient constructions for one-way hash chains,”
Proceedings of the Third International Conference on Applied Cryptography and Network
Security, New York, NY, USA, June 2005; in: Lecture Notes in Computer Sciences, vol. 3531,
Berlin, Heidelberg: Springer-Verlag, 2005.

[13] B. Jacob, T. Mudge, “Virtual memory: issues of implementation,” Computer, vol. 31, no. 6 (June
1998), pp. 33–43.

[14] R. Kumar, A. Singhania, A. Castner, E. Kohler, M. Srivastava, “A system for coarse grained
memory protection in tiny embedded processors,” Proceedings of the 44th Annual Conference on
Design Automation, San Diego, California, USA, June 2007, pp. 218–223.

[15] L. Lamport, “Password authentication with insecure communication,” Communications of the
ACM, vol. 24, no. 11 (November 1981), pp. 770–772.

[16] A. W. Leung, E. L. Miller, S. Jones, “Scalable security for petascale parallel file systems,”
Proceedings of the ACM/IEEE Conference on Supercomputing, Reno, Nevada, November 2007.

[17] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, D. Culler, “TinyOS: an operating system for wireless sensor networks,” in: Ambient
Intelligence. New York: Springer-Verlag, 2005, pp. 115–148.

[18] H. M. Levy, Capability-Based Computer Systems. Bedford, Mass.: Digital Press, 1984.

[19] L. Lopriore, “Protection structures in multithreaded systems,” The Computer Journal, vol. 56, no.
4 (April 2013), pp. 478–496.

[20] L. Lopriore, “Password capabilities revisited,” The Computer Journal, first published online
November 11, 2013, doi:10.1093/comjnl/bxt131

[21] L. Lopriore, “Hardware support for memory protection in sensor nodes,” Microprocessors and
Microsystems, vol. 38, no. 3 (May 2014), pp. 226–232.

[22] D. S. Miller, D. B. White, A. C. Skousen, R. Tcherepov, “Lower level architecture of the
Sombrero single address space distributed operating system,” Proceedings of the 8th IASTED
International Conference on Parallel and Distributed Computing and Systems, Dallas, Texas,
USA, November 2006.

[23] R. Pose, “Password-capabilities: their evolution from the Password-Capability System into Wal-
nut and beyond,” Proceedings of the Sixth Australasian Computer Systems Architecture Confer-
ence, Gold Coast, Australia, January 2001, pp. 105–113.

[24] J. H. Saltzer, M. D. Schroeder, “The protection of information in computer systems,” Proceedings
of the IEEE, vol. 63, no. 9 (September 1975), pp. 1278–1308.

[25] P. Samarati, S. de Capitani di Vimercati, “Access control: policies, models, and mechanisms,” in:
R. Focardi, R. Gorrieri (Eds.), Foundations of Security Analysis and Design. Berlin, Heidelberg:
Springer, 2001, pp. 137–196.

[26] F. B. Schneider, “Least privilege and more,” IEEE Security & Privacy, vol. 1, no. 5 (September–
October 2003), pp. 55–59.

– 23 –

[27] M. D. Schroeder, J. H. Saltzer, “A hardware architecture for implementing protection rings,”
Communications of the ACM, vol. 15, no. 3 (March 1972), pp. 157–170.

[28] M. Simpson, B. Middha, R. Barua, “Segment protection for embedded systems using run-time
checks,” Proceedings of the 2005 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, San Francisco, California, USA, September 2005, pp. 66–77.

[29] J. S. Shapiro, J. M. Smith, D. J. Farber, “EROS: a fast capability system,” Proceedings of the
Seventeenth ACM Symposium on Operating Systems Principles, Kiawah Island Resort, SC, USA,
December 1999; in: Operating Systems Review, vol. 34, no. 5 (December 1999), pp. 170–185.

[30] O. Stecklina, P. Langendörfer, H. Menzel, “Towards a secure address space separation for low
power sensor nodes,” Proceedings of the 1st International Conference on Pervasive and
Embedded Computing and Communication Systems, Algarve, Portugal, March 2011.

[31] O. Stecklina, P. Langendörfer, H. Menzel, “Design of a tailor-made memory protection unit for
low power microcontrollers,” Proceedings of the 8th IEEE International Symposium on Industrial
Embedded Systems, Porto, Portugal, June 2013.

[32] W. Trappe, J. Song, R. Poovendran, K. R. Liu, “Key management and distribution for secure
multimedia multicast,” IEEE Transactions on Multimedia, vol. 5, no. 4 (2003), pp. 544–557.

[33] M. V. Wilkes, “Hardware support for memory protection: capability implementations,” ACM
SIGARCH Computer Architecture News, vol. 10, no. 2 (March 1982), pp. 107–116.

