4,034 research outputs found

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    An underwater routing protocol with void detection and bypassing capability

    Get PDF

    A stateless opportunistic routing protocol for underwater sensor networks

    Get PDF
    Routing packets in Underwater Sensor Networks (UWSNs) face different challenges, the most notable of which is perhaps how to deal with void communication areas. While this issue is not addressed in some underwater routing protocols, there exist some partially state-full protocols which can guarantee the delivery of packets using excessive communication overhead. However, there is no fully stateless underwater routing protocol, to the best of our knowledge, which can detect and bypass trapped nodes. A trapped node is a node which only leads packets to arrive finally at a void node. In this paper, we propose a Stateless Opportunistic Routing Protocol (SORP), in which the void and trapped nodes are locally detected in the different area of network topology to be excluded during the routing phase using a passive participation approach. SORP also uses a novel scheme to employ an adaptive forwarding area which can be resized and replaced according to the local density and placement of the candidate forwarding nodes to enhance the energy efficiency and reliability. We also make a theoretical analysis on the routing performance in case of considering the shadow zone and variable propagation delays. The results of our extensive simulation study indicate that SORP outperforms other protocols regarding the routing performance metrics

    A new strategy to improve proactive route updates in mobile ad hoc networks

    Get PDF
    This paper presents two new route update strategies for performing proactive route discovery in mobile ad hoc networks (MANETs). The first strategy is referred to as minimum displacement update routing (MDUR). In this strategy, the rate at which route updates are sent into the network is controlled by how often a node changes its location by a required distance. The second strategy is called minimum topology change update (MTCU). In this strategy, the route updating rate is proportional to the level of topology change each node experiences. We implemented MDUR and MTCU on top of the fisheye state routing (FSR) protocol and investigated their performance by simulation. The simulations were performed in a number of different scenarios, with varied network mobility, density, traffic, and boundary. Our results indicate that both MDUR and MTCU produce significantly lower levels of control overhead than FSR and achieve higher levels of throughput as the density and the level of traffic in the network are increased

    A Self-Organising Distributed Location Server for Ad Hoc Networks

    Get PDF
    Wireless networks allow communication between multiple devices (nodes) without the use of wires. Range in such networks is often limited restricting the use of networks to small offices and homes; however, it is possible to use nodes to forward packets for others thereby extending the communication range of individual nodes. Networks employing such forwarding are called Multi-Hop Ad Hoc Networks (MANETS) Discovering routes in MANETS is a challenging task given that the topology is flat and node addresses reveal nothing about their place in the network. In addition, nodes may move or leave changing the network topology quickly. Existing approaches to discovering locations involve either broadcast dissemination or broadcast route discovery throughout the entire network. The reliance on the use of techniques that use broadcast schemes restricts the size of network that the techniques are applicable to. Routing in large scale ad hoc networks is therefore achieved by the use of geographical forwarding. Each node is required to know its location and that of its neighbours so that it may use this information for forward packets. The next hop chosen is the neighbour that is closest to the destination and a number of techniques are used to handle scenarios here the network has areas void of nodes. Use of such geographical routing techniques requires knowledge of the destination's location. This is provided by location servers and the literature proposes a number of methods of providing them. Unfortunately many of the schemes are limited by using a proportion of the network that increases with size, thereby immediately limiting the scalability. Only one technique is surveyed that provides high scalability but it has a number of limitations in terms of handling node mobility and failure. Ad hoc networks have limited capacity and so the inspiration for a technique to address these shortcomings comes from observations of nature. Birds and ants are able to organise themselves without direct communication through the observation of their environment and their peers. They provide an emergent intelligence based on individual actions rather than group collaboration. This thesis attempts to discover whether software agents can mimic this by creating a group of agents to store location information in a specific location. Instead of requiring central co-ordination, the agents observe one another and make individual decisions to create an emergent intelligence that causes them to resist mobility and node failures. The new technique is called a Self Organising Location Server (SOLS) and is compared against existing approaches to location servers. Most existing techniques do not scale well whereas SOLS uses a new idea of a home location. The use of this idea and the self organising behaviour of the agents that store the information results in significant benefits in performance. SOLS significantly out performs Terminode home region, the only other scalable approach surveyed. SOLS is able to tolerate much higher node failure rates than expected in likely implementations of large scale ad hoc networks. In addition, SOLS successfully mitigates node mobility which is likely to be encountered in an ad hoc network
    • …
    corecore