5 research outputs found

    Scalable modular self-reconfigurable robots using external actuation

    Full text link
    Abstract — This paper presents a method for scaling down the size and scaling up the number of modules of self-reconfigurable systems by focusing on the actuation mechanism. Rather than developing smaller actuators, the main actuator is removed entirely. Energy instead comes from the environment to provide motion in prescribed synchronous ways. Prescribed synchronous motions allow much faster assembly times than random Brownian motion which has been used before. An instantiation of this idea is presented using a motion platform to induce motions based on the inertial properties of the modules and the timed actuation of small latching mechanisms. I

    Roombots-Towards Decentralized Reconfiguration with Self-Reconfiguring Modular Robotic Metamodules

    Get PDF
    This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots metamodules. We explore how reconfiguration by locomotion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planne

    Systematic strategies for 3-dimensional modular robots

    Get PDF
    Modular robots have been studied an classified from different perspectives, generally focusing on the mechatronics. But the geometric attributes and constraints are the ones that determine the self-reconfiguration strategies. In two dimensions, robots can be geometrically classified by the grid in which their units are arranged and the free cells required to move a unit to an edge-adjacent or vertex-adjacent cell. Since a similar analysis does not exist in three dimensions, we present here a systematic study of the geometric aspects of three-dimensional modular robots. We find relations among the different designs but there are no general models, except from the pivoting cube one, that lead to deterministic reconfiguration plans. In general the motion capabilities of a single module are very limited and its motion constraints are not simple. A widely used method for reducing the complexity and improving the speed of reconfiguration plans is the use of meta-modules. We present a robust and compact meta-module of M-TRAN and other similar robots that is able to perform the expand/contract operations of the Telecube units, for which efficient reconfiguration is possible. Our meta-modules also perform the scrunch/relax and transfer operations of Telecube meta-modules required by the known reconfiguration algorithms. These reduction proofs make it possible to apply efficient geometric reconfiguration algorithms to this type of robots

    Modular Self-Reconfigurable Robotic Systems: A Survey on Hardware Architectures

    Get PDF
    Modular self-reconfigurable robots present wide and unique solutions for growing demands in the domains of space exploration, automation, consumer products, and so forth. The higher utilization factor and self-healing capabilities are most demanded traits in robotics for real world applications and modular robotics offer better solutions in these perspectives in relation to traditional robotics. The researchers in robotics domain identified various applications and prototyped numerous robotic models while addressing constraints such as homogeneity, reconfigurability, form factor, and power consumption. The diversified nature of various modular robotic solutions proposed for real world applications and utilization of different sensor and actuator interfacing techniques along with physical model optimizations presents implicit challenges to researchers while identifying and visualizing the merits/demerits of various approaches to a solution. This paper attempts to simplify the comparison of various hardware prototypes by providing a brief study on hardware architectures of modular robots capable of self-healing and reconfiguration along with design techniques adopted in modeling robots, interfacing technologies, and so forth over the past 25 years

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life
    corecore