8 research outputs found

    Mobility support in Named Data Networking: a survey

    Get PDF

    Analytical modelling solution of producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization

    Producer Mobility Support Schemes for Named Data Networking: A Survey

    Get PDF
    Mobile devices connectivity and data traffic growth requires scalable and efficient means of data distribution over the Internet. Thus, influenced the needs for upgrading or replacing the current Internet architecture to cater the situation as Named Data Networking (NDN) was proposed. NDN is clean-slate Internet architecture, proposed to replace IP with hierarchical named content that utilizes route aggregation to improve scalability and support mobility. Although, NDN provides supports for content consumer mobility with the help of catching capabilities, however, content producer faces many problems similar to mobility in IP architecture, such as, long handoff delay, unnecessary Interest packet losses and high bandwidth utilization. Hence, many concepts and schemes were proposed to address these problems. This paper reviewed and conceptually analyzed the schemes based on their fundamental design that broadly categorized into indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach. In the review analysis, mapping-based approach schemes provide optimal path for packets delivery, high handoff delay Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces tiangular routing path. The control/data plane-based approach schemes provide sub-optimal routing path and high handoff delay. The paper provided both strength and weakness of each scheme for further research

    PMSS: Producer Mobility Support Scheme Optimization with RWP Mobility Model in Named Data Networking

    Get PDF
    Abstract: The movement pattern of mobile producer plays an important role in mobility performance analysis of the wireless and mobile network. However, the producer mobility behavior is directly affecting the handoff latency and signaling overhead cost. Many researchers provide analytical investigation to analyze and solve the handoff problems and compared with the simulation result. To justify between simulation and analytical investigation, movement behavior of mobile node needs to be included in the analytical investigation to make it possible to compare with the simulation-based result. This paper incorporated Random WayPoint Mobility (RWPM) model, to determine the behavior of mobile producer, for analytical solution of producer mobility support in NDN. In this paper, we introduce mobility Interest packets to conveyed new prefix or location of mobile producer, a broadcasting strategy to facilitate the handoff process and the immobile anchor router was modified to perform a dual function that is, tagging of anchors and broadcasting of tagged mobility Interest packets. The performance analysis for mobile producer behavior and handoff latency shows that our proposed Producer Mobility Support Scheme (PMSS) reduces handoff latency compared to DNS-like and Home Agent routing approach

    Optimal broadcast strategy-based producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking is a consumer-driven network that supports content consumer mobility due to the nature of in-network catching. The catching suppressed unnecessary Interest packets losses by providing an immediate copy of the data and consumer-driven nature influencedthe mobile consumer to resend unsatisfied Interest packet immediately after the handoff. Once the producer moves to a new location, the name prefix changed automatically after handoff to the new router or point of attachment. The entire network lacks the knowledge of producer movement unless if the producer announces its new prefix to update the FIBs of intermediate routers. Lack of producer’s movement knowledge causes an increase of handoff latency, signaling overhead cost, Interests packets losses, poor utilization of bandwidth and packets delivery. Therefore, there is needs to provide substantial producer mobility support to minimize the handoff latency, handoff signaling overhead cost, reduce the unnecessary Interest packets loss to improve data packets delivery once a content producer relocated. In this paper, broadcasting strategy is introduced to facilitate the handoff procedures and update the intermediate routers about the producer movement. Hence, analytical investigation result of this paper addresses the deficiency of Kite scheme by minimizing handoff signaling cost and provides data path optimization after the handoff

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    Producer mobility support scheme for indirection-based mobility approach in named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of producer inflict changes in routing name prefix hierarchy, which makes the entire network unaware of the new location of the producer. Thus, it causes some significant challenges, such as unnecessary Interest packet losses, high handoff latency, high signaling overhead cost, poor utilization of bandwidth, and path stretching. The aim of this research is to propose a Producer Mobility Support Scheme (PMSS) in order to minimize the handoff latency, signaling cost, improve data packets delivery via optimal path once a content producer relocated. The proposed PMSS model includes the formulated Mobility Weighted Function to incorporate movement behavior of the mobile producer. Also, Mobility Interest packet was designed to convey binding information and Broadcasting Strategy to facilitate handoff processes by updating the intermediate routers. Therefore, modeling and simulation methodologies were used in the design and performance evaluation of PMSS for rigorous investigation. The analytical result of PMSS scheme outperforms Optimal Producer Mobility for Larger-scale scheme with 50% lower handoff latency and signaling cost. Moreover, it minimizes 46% handoff signaling cost and improves 32% data path optimization as compared to the Kite scheme. The simulation results show that the proposed PMSS scheme minimizes 40% handoff latency, 28% packets delay, 28% unnecessary Interest packets loss, and improves 20% throughput. This study contributes to the development of the movement behavior model and mobility update packets. The findings have significant implication to support seamless mobility and the integration of NDN with other networks without additional mechanism
    corecore