2,131 research outputs found

    Distributed Processing of Generalized Graph-Pattern Queries in SPARQL 1.1

    Get PDF
    We propose an efficient and scalable architecture for processing generalized graph-pattern queries as they are specified by the current W3C recommendation of the SPARQL 1.1 "Query Language" component. Specifically, the class of queries we consider consists of sets of SPARQL triple patterns with labeled property paths. From a relational perspective, this class resolves to conjunctive queries of relational joins with additional graph-reachability predicates. For the scalable, i.e., distributed, processing of this kind of queries over very large RDF collections, we develop a suitable partitioning and indexing scheme, which allows us to shard the RDF triples over an entire cluster of compute nodes and to process an incoming SPARQL query over all of the relevant graph partitions (and thus compute nodes) in parallel. Unlike most prior works in this field, we specifically aim at the unified optimization and distributed processing of queries consisting of both relational joins and graph-reachability predicates. All communication among the compute nodes is established via a proprietary, asynchronous communication protocol based on the Message Passing Interface

    Compressed k2-Triples for Full-In-Memory RDF Engines

    Get PDF
    Current "data deluge" has flooded the Web of Data with very large RDF datasets. They are hosted and queried through SPARQL endpoints which act as nodes of a semantic net built on the principles of the Linked Data project. Although this is a realistic philosophy for global data publishing, its query performance is diminished when the RDF engines (behind the endpoints) manage these huge datasets. Their indexes cannot be fully loaded in main memory, hence these systems need to perform slow disk accesses to solve SPARQL queries. This paper addresses this problem by a compact indexed RDF structure (called k2-triples) applying compact k2-tree structures to the well-known vertical-partitioning technique. It obtains an ultra-compressed representation of large RDF graphs and allows SPARQL queries to be full-in-memory performed without decompression. We show that k2-triples clearly outperforms state-of-the-art compressibility and traditional vertical-partitioning query resolution, remaining very competitive with multi-index solutions.Comment: In Proc. of AMCIS'201

    Partout: A Distributed Engine for Efficient RDF Processing

    Full text link
    The increasing interest in Semantic Web technologies has led not only to a rapid growth of semantic data on the Web but also to an increasing number of backend applications with already more than a trillion triples in some cases. Confronted with such huge amounts of data and the future growth, existing state-of-the-art systems for storing RDF and processing SPARQL queries are no longer sufficient. In this paper, we introduce Partout, a distributed engine for efficient RDF processing in a cluster of machines. We propose an effective approach for fragmenting RDF data sets based on a query log, allocating the fragments to nodes in a cluster, and finding the optimal configuration. Partout can efficiently handle updates and its query optimizer produces efficient query execution plans for ad-hoc SPARQL queries. Our experiments show the superiority of our approach to state-of-the-art approaches for partitioning and distributed SPARQL query processing

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark

    Full text link
    Querying very large RDF data sets in an efficient manner requires a sophisticated distribution strategy. Several innovative solutions have recently been proposed for optimizing data distribution with predefined query workloads. This paper presents an in-depth analysis and experimental comparison of five representative and complementary distribution approaches. For achieving fair experimental results, we are using Apache Spark as a common parallel computing framework by rewriting the concerned algorithms using the Spark API. Spark provides guarantees in terms of fault tolerance, high availability and scalability which are essential in such systems. Our different implementations aim to highlight the fundamental implementation-independent characteristics of each approach in terms of data preparation, load balancing, data replication and to some extent to query answering cost and performance. The presented measures are obtained by testing each system on one synthetic and one real-world data set over query workloads with differing characteristics and different partitioning constraints.Comment: 16 pages, 3 figure
    • 

    corecore