
Distributed Processing of Generalized
Graph-Pattern Queries in SPARQL 1.1

Sairam Gurajada1 and Martin Theobald2

1 Max-Planck-Institute for Informatics, gurajada@mpi-inf.mpg.de
2 University of Ulm, martin.theobald@uni-ulm.de

Abstract. We propose an efficient and scalable architecture for pro-
cessing generalized graph-pattern queries as they are specified by the
current W3C recommendation of the SPARQL 1.1 “Query Language”
component. Specifically, the class of queries we consider consists of sets
of SPARQL triple patterns with labeled property paths. From a rela-
tional perspective, this class resolves to conjunctive queries of relational
joins with additional graph-reachability predicates. For the scalable, i.e.,
distributed, processing of this kind of queries over very large RDF col-
lections, we develop a suitable partitioning and indexing scheme, which
allows us to shard the RDF triples over an entire cluster of compute
nodes and to process an incoming SPARQL query over all of the rele-
vant graph partitions (and thus compute nodes) in parallel. Unlike most
prior works in this field, we specifically aim at the unified optimization
and distributed processing of queries consisting of both relational joins
and graph-reachability predicates. All communication among the com-
pute nodes is established via a proprietary, asynchronous communication
protocol based on the Message Passing Interface.

1 Introduction

1.1 Background & Motivation
RDF [1] and SPARQL [2] are two standards recently recommended by the W3C
for representing and querying linked data on the Web. RDF is a very versa-
tile data format and hence found a wide adoption in many communities. Due
to its broad applicability, it is frequently employed as a generic, albeit simple,
knowledge representation format for large-scale information-extraction endeav-
ors such as DBpedia, Freebase or YAGO, for capturing relationships in social
networks, and many others. Consequently, much recent work has focused on the
distributed, and hence scalable, processing of graph-pattern queries in SPARQL
1.0 via a variety of SQL [20,22] and NoSQL architectures [4,14]. Engines such
as SHARD [19], SW-Store [15] (which is a Hadoop extension of the centralized
RDF-3X [17] engine), EAGRE [27], Trinity.RDF [26], our own TriAD [11] en-
gine, as well as commercial tools like Virtuoso [5] and Ontobroker [7] evaluate
SPARQL queries either as series of relational joins [11,15,19,27] or via iterative
graph exploration and message passing [26].

ar
X

iv
:1

60
9.

05
29

3v
2

 [
cs

.D
B

]
 2

0
D

ec
 2

01
6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/147014934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

With its recent update, 1.1, SPARQL underwent a major revision. From a
relational perspective, the introduction of property paths [3] likely constitutes
the most remarkable change. Property paths allow for annotating pairs of query
vertices by regular expressions in which properties and entire paths may be
marked by a Kleene “+” or “*”. SPARQL 1.1 thus introduces a notion of gener-
alized graph-pattern queries in which property paths express transitive reacha-
bility constraints among sets of RDF entities that become bound to the query
variables. That is, unlike in SPARQL 1.0, joins among triple patterns may be
recursive and need to be evaluated either iteratively, or they involve a potentially
costly materialization of the properties’ closures.

As opposed to the large variety of SPARQL 1.0 engines, the processing of
property paths in SPARQL 1.1 so far has been investigated by only very few
approaches [5,10,18] (of which only [5] is available). A particular challenge lies
in the combined optimization of relational joins among the triple patterns (based
on shared variables) with additional graph-reachability predicates (based on one
or more properties marked by a “+” or “*”). While state-of-art indexing tech-
niques for graph-reachability predicates [9,21,25] are inherently limited to a cen-
tralized setting, we are currently aware of only one approach that specifically
tackles distributed reachability queries for single-source, single-target queries
[6]. For multi-source, multi-target reachability queries, as they frequently occur
in SPARQL 1.1, we are aware of just two centralized approaches [9,23] that
provide suitable indexing and processing strategies. Distributed graph engines,
such as Berkeley’s GraphX [24] and Apache Giraph, on the other hand, allow for
the scalable processing of graph queries over massive, partitioned data graphs.
Both provide generic API’s for implementing various kinds of graph algorithms,
including multi-source, multi-target reachability queries. However, they do not
support the kinds of indexing techniques known from the centralized approaches,
and they are not directly amenable to the declarative way of querying RDF data
as it is suggested by the SPARQL standard. Processing property paths with
transitive reachability constraints under these frameworks requires an iterative
form of graph traversal, which may result in as many iterations (and hence
communication rounds) as the diameter of the graph in the worst case.

Summarizing this motivating section, we are not aware of any previous ap-
proach that achieves a true scale-out in processing generalized graph-pattern
queries for SPARQL 1.1 under both strong (thus reducing the query time by in-
creasing the number of processors) and weak scaling (thus achieving predictable
query times when increasing both the data size and the number of processors). In
this paper, we present a distributed architecture that takes advantage of indexing
techniques for graph-reachability predicates known from centralized approaches,
while retaining the declarative style of querying massive RDF data graphs for
SPARQL 1.1 with property paths.

1.2 Contributions
We summarize the contributions of our work as follows.
• We present an efficient and scalable query engine for the core of the SPARQL
1.1. Specifically, the fragment of SPARQL we consider resolves to sets of triple

patterns with labeled property paths, which allows for formulating general-
ized graph pattern queries as conjunctive queries of relational joins with
additional graph-reachability predicates (including one or more properties
marked by a Kleene “+” or “*”).
• We provide a unified indexing scheme, cost model and query optimization
framework to seamlessly integrate graph-reachability predicates into the re-
lational query processor of our TriAD [11] engine. TriAD∗ employs a strictly
fixed, asynchronous message-passing protocol to evaluate a SPARQL 1.1
query among all of the compute nodes in parallel. Our protocol requires
exactly one round of communication per graph-reachability predicate and
thus avoids a costly, iterative form of communication.
• Our approach is the first to report an actual horizontal scale-out in processing

SPARQL 1.1 queries with property paths over a number of large RDF collec-
tions. We present a detailed experimental evaluation of our approach under
both strong and weak scaling, and in comparison to the Virtuoso native RDF
store.

2 RDF Data & SPARQL Query Model
We next formally define our data and query model. Our model is based on a
graph representation of RDF data and supports the core syntax of SPARQL 1.1
to express queries over an RDF data graph as graph-pattern queries. Specifically,
we focus on the WHERE clause of a SPARQL 1.1 query, in which triple patterns
(including triples annotated with property paths) are connected (i.e., “joined”)
via their shared variables. We currently omit other SPARQL 1.0/1.1 extensions
such as UNION, FILTER, aggregations, subqueries and negation.

2.1 RDF Data Model
We follow the general W3C recommendation of the basic RDF vocabulary [1]
(however ignoring RDF schema extensions), in which an RDF collection consists
of a set of triples which are each of the form 〈subject , property , object〉 (or 〈s,
p, o〉, for short). A set of RDF triples can thus concisely be represented as a
directed, labeled multi-graph, as it is defined next.

Definition 1. An RDF data graph GD(VD, ED,Cons, φD) is a directed, la-
beled multi-graph where VD is the set of data vertices, ED is the set of directed
edges connecting the vertices in VD, Cons is the set of vertex and edge labels,
and φD is a labeling function with φD : VD ∪ ED → Cons s.t. ∀vi, vj ∈ VD,
vi 6= vj, it holds that φD(vi) 6= φD(vj).

Partitioning RDF Data Graphs. A potentially scalable approach for manag-
ing very large RDF collections is to follow a distributed indexing scheme. In our
approach, an RDF data graph is partitioned into multiple graph partitions, such
that one or more of these graph partitions can be managed locally by a com-
pute node. More formally, an RDF data graph GD is partitioned into k vertex-
and edge-disjoint graphs G = {G1, G2, ..., Gk}, where each Gi(Vi, Ei,Cons, φD)
is a vertex-induced subgraph of GD. That is, it holds that

⋃
i=1..k Vi = VD and

Fig. 1. A partitioned RDF data graph

Vi ∩ Vj = ∅ for all i 6= j. Figure 1 shows an example RDF data graph that is
partitioned into the two graph partitions G1, G2 which are located at slaves 1
and 2, respectively.

2.2 SPARQL Query Model
SPARQL 1.0 [2] is a widely adopted W3C language recommendation for query-
ing RDF data. A typical SPARQL 1.0 query comprises a conjunction of triple
patterns of the form 〈s, p, o〉, where each of the s, p, o components may denote
either a constant or a variable. For instance, the query “Find all professors who
won a Turing Award and worked in a US university” can be specified in SPARQL
1.0 as follows.

SELECT ?person WHERE {
?person won Turing_Award. ?person workedAt ?univ.
?univ locIn ?city. ?city locIn ?state.
?state locIn ?country. ?country hasLabel ”USA”}

Property Paths.With the latest revision, SPARQL 1.1, property paths [3] were
introduced to SPARQL 1.0. A property path specifies how an entity is (possibly
transitively) connected to another entity. The above query can thus concisely be
rewritten by using a property path as follows.

SELECT ?person WHERE {
?person won Turing_Award.
?person workedAt/locIn ∗ /hasLabel ”USA” }

Here, the property path workedAt/locIn ∗ /hasLabel expresses a transitive con-
nectivity via the locIn property. That is, a path connecting any vertex that
becomes bound to the variable ?person with the vertex with label “USA” must
involve zero or more consecutive properties with the label locIn. Property paths
thus help the user in two ways: (1) in simplifying the query representation and
(2) in formulating queries with partial knowledge of the underlying schema.
SwPP Queries. We focus on a subset of queries expressible in SPARQL 1.1,
in the following called “SwPP”, consisting of conjunctions of triple patterns with
property paths. Specifically, a triple pattern of an SwPP query again is of the

form 〈s, p, o〉, where each of the s, o components may refer to either a constant
in Cons or to a query variable from a distinct set of variables Vars. Moreover, p
may refer to a path expression whose grammar we define below.

path := path/path (concatenation of paths) (1)
:= URI (single property) (2)
:= ˆURI (inverse property direction) (3)
:= URI? (zero or one property) (4)
:= URI∗ (zero or more properties) (5)
:= URI+ (one or more properties) (6)

Formally, an SwPP query thus again forms a directed, labeled multi-graph,
as it is defined next.

Definition 2. A SPARQL query graph GQ (VQ, EQ,Cons, Vars, φQ, ψQ) is
a directed, labeled multi-graph where VQ is the set of query vertices, EQ is the
set of edges connecting the vertices in VQ, Cons is the set of vertex and edge
labels, Vars is a set of query variables, φQ is a vertex-labeling function with
φQ : VQ → Cons ∪ Vars, and ψQ is an edge-labeling function with ψQ : EQ →
{ˆ} |Cons | {∗,+, ?}.

We hereby adopt a simpler definition for property paths than the full syn-
tax proposed by the W3C [3]. However, by rewriting an entire path expression
(denoted as “path” in the above grammar) into a sequence of join conditions,
each with a property that denotes a single URI (referred to as “URI”) with an
optional Kleene “*” or “+”, we allow a more general syntax for property paths
rather than just a single transitive property. The above grammar in particular
allows concatenations of properties into paths of arbitrary length, as long as
these can be rewritten into a conjunction of triple patterns and thus conform
to Definition 2. In our implementation, the distinction between “+”, “*”, “?” and
“ˆ” is very simple. For “+”, we merely disallow an equality between a source and
a target vertex; while for “?”, we restrict the maximum path length to 1. The
inversion “ˆ” simply swaps the source and target vertices.

3 Architecture
The architecture of our SPARQL 1.1 engine (in the following coined TriAD*) is
based on TriAD [11,12], which we originally developed for processing conjunc-
tions of triple patterns in SPARQL 1.0. The design of TriAD in principle follows
a classical master-slave architecture at indexing time, but allows for a direct,
asynchronous communication among the slaves at query-processing time.
Indexing. At indexing time, the master node is responsible for the encoding of
incoming RDF triples and for the distribution of these triples among the slave
nodes. The slaves then construct their local index structures (each over a distinct
graph partition) and send their local index statistics back to the master node.

Query Processing. At query time, the master node facilitates these precom-
puted index statistics to compile a global query plan that is then distributed to
and processed at all slaves in parallel. While processing such a query plan, the
slaves directly exchange their intermediate query results via a proprietary, asyn-
chronous communication protocol based on the Message Passing Interface [8].
To facilitate the processing of SPARQL 1.1 queries with property paths, TriAD*
augments the architecture of TriAD in two decisive ways:
• Triple & Reachability Indexes:We create two kinds of index structures—
one that is optimized for processing joins and another one that is optimized
for graph-reachability queries among the slaves (see Section 4).
• Unified Query Optimization: We devise a unified cost model for optimiz-
ing both relational joins and graph-reachability predicates (see Section 5).

4 Index Organization
We use a hashing-based sharding scheme to distribute RDF triples across the
slaves [11,15,19]. Each RDF triple in a collection is parsed at the master node
and encoded into an integer format via a dictionary to obtain compact identifiers
for each of the s, p and o components. Every such encoded 〈s, p, o〉 triple is then
distributed to (at most) two slaves i, j by choosing i = (s mod k) and j = (o
mod k) as sharding conditions, respectively. Although we use a hash function
for sharding, we can easily adopt different partitioning schemes, for example, by
exchanging s, o in the hashes with the graph partitions to which s, o are assigned
by a locality-preserving graph-partitioning framework such as METIS [16].

4.1 Triple Indexes
Following TriAD’s general indexing strategy [11], each slave creates six permu-
tations of in-memory triple indexes for the efficient processing of relational joins
among triple patterns based on their subjects or objects. Depending on whether
an incoming triple was hashed to slave i via its subject or object, these six per-
mutations are arranged into two groups: (i) the three subject-key indexes (SPO,
SOP, PSO) and (ii) the three object-key indexes (OSP, OPS, POS). That is, a
sharded triple, which was hashed onto slave i via its subject field, is indexed in
three permutations by using the subject as key. Likewise, a triple hashed onto
slave i via its object field is indexed three times by using the object as key. The
two PSO and POS permutations are employed for index scans of triple patterns
with a given property and an optional subject or object as key.
Sorting & Scans. The six vectors storing the SPO permutations at each slave
are each sorted with respect to their permutation order. For example, the OPS
vector is sorted primarily by the object field, followed by the predicate field, and
finally by the subject field. Thus, when using a given object as search key, we
first determine the entry point in the OPS vector via a binary search and then
start scanning all triples under this search key sequentially.

4.2 Indexes for Property Paths
In addition to the triple indexes, each slave constructs a separate reachability
index to facilitate the efficient processing of property paths in SPARQL 1.1.

One such reachability index is built for each unique property label p in the RDF
collection, similar to the approach described in [10]. The construction of our
reachability index for a property p over a partitioned RDF graph is based on
our recent results from [13], which we briefly summarize below.

Let Gp = {Gp
1, G

p
2, . . . , G

p
k} be the p-induced subgraphs of an RDF data

graph GD. That is, each Gp
i is a subgraph of a previously determined graph par-

tition Gi (e.g., by using METIS [16] to partition the original multi-labeled data
graph GD) that comprises of only p-labeled edges. For each such subgraph Gp

i ,
we first identify the set of vertices Ipi (coined “in-boundaries”) and Op

i (coined
“out-boundaries”) that lie on the cut C that is given by Gp. Next, for each parti-
tion Gp

i , we precompute all reachable pairs of vertices from in-boundaries Ipi to
out-boundaries Op

i . We then construct two graph-based index structures, called
boundary graph and compound graph (described in detail in [13]), as follows.
Each set of reachable pairs for a partition Gp

i is represented as a bipartite graph
with edges from in-boundaries to out-boundaries that are transitively reachable.
Boundary nodes which are both in- and out-boundaries are omitted from this
step. The bipartite graphs for each partition Gp

i are then communicated to (i.e.,
replicated across) all slaves j (for all j 6= i). At each slave i, a boundary graph
Bp

i is constructed by merging the received bipartite graphs from slaves j (for all
j 6= i) with the cut C. Finally, we construct a compound graph Cp

i by merging
the boundary graph Bp

i also with the local subgraph Gp
i .

Reachability Indexes. To reduce the sizes of the precomputed boundary
graphs Bp

i , on the one hand, and to further accelerate graph-reachability queries
over the compound graphs Cp

i , on the other hand, we apply the following opti-
mizations (also described in detail in [13]). First, we determine equivalence sets
over in- and out-boundaries Ipi and Op

i . The in- and out-boundaries are then
redefined with respect to new virtual vertices, each representing an equivalence
set. That is, Ipi and Op

i comprises of all in-virtual and out-virtual vertices, re-
spectively. The bipartite graphs are then computed over the redefined Ipi and
Op

i sets. This technique helps to reduce the size of the boundary graphs Bp
i . The

compressed boundary graphs are then used to construct the compound graphs
Cp

i at each slave i in the same manner as before. Second, the obtained com-
pound graphs are each condensed into a directed acyclic graph (DAG), in which
each vertex represents a strongly connected component (SCC) of the compound
graph. We finally store these DAGs as in-memory adjacency lists (serialized into
another pair of PSO and POS vectors) and perform a local DFS traversal to
answer a graph-reachability query at each slave.

4.3 Index Statistics
To optimize SwPP queries consisting of both relational joins among triple pat-
terns and of triple patterns with property paths, we rely on a cost-based plan
generator which is part of TriAD’s architecture. For this, we collect various statis-
tics over the RDF data for both the basic triple patterns and triple patterns with
property paths.
Statistics for Triple Patterns. As in [11], our statistics for basic triple pat-
terns include (i) cardinalities Card(Ri) of relations Ri induced by individual

subject, property and object keys and (ii) of relations induced by subject-object,
property-subject and property-object pairs. In addition, we compute the join se-
lectivities Sel(pi , pj) of all pairs of properties pi, pj to estimate the cardinality
of a join among two triple patterns.

Statistics for Property Paths. In order to plug triple patterns with property
paths into our optimizer, we need to also estimate the selectivity of a property
path. Precomputing these selectivities for every possible property path that may
occur in a query is clearly intractable. We thus follow a simple sampling-based
approach. For each individual property p, we determine the reachability selectiv-
ity Sel(p) as the fraction of randomly sampled source and target vertices (s, t),
for which s t holds with respect to the subgraph of GD that is induced by p.

5 Query Optimization & Distributed Processing

We first translate SwPP queries in SPARQL 1.1 into a graphical representation,
which then forms the basis for query optimization. These query graphs are gen-
erated by introducing a vertex for each triple pattern in the query, while the
edges that connect two such vertices represent equi-joins. These equi-joins are
based on the variables (i.e., either the subjects or objects) that are shared by two
such triple patterns. Edges for equi-joins are labeled with the shared variables.
In addition to SPARQL 1.0 queries, SwPP queries contain triple patterns with
property paths. Following [10], we represent a property path by a distinguished
edge among two such query vertices, whose labels denote the reachability pred-
icates among the subjects or objects in the respective vertices’ triple patterns.
In case the subject or object of a connected triple pattern is either a constant
or an unbound variable (i.e., the variable is not present in the other triple pat-
terns), we create a new query vertex for the same and add an edge between the
respective query vertices.

SELECT * WHERE {
P1: ?p workedAt ?u.
P2: ?p won "Turing_Award".
P3: ?p1 workedAt ?u1.
P4: ?u locIn* "USA".
P5: ?p workedWith* ?p1.
P6: ?u sameState* ?u1.}

Fig. 2. Example SwPP query and its graph representation

Figure 2 shows an example SwPP query and its corresponding graph rep-
resentation. Here, patterns P1, P2, P3 are basic triple patterns whose property
each consists of a single URI. These are represented as vertices R1, R2, R3, re-
spectively, in the query graph. Since, the property path of P4 points to only the
constant "USA", a separate vertex R"USA" representing a relation that consists of
just a singleton tuple is added to the query graph. The equi-join on the shared
variable ?p is represented by the continuous line between R1 and R2. A reacha-
bility edge, denoted by a dashed line for each property path, is added between

the respective subjects’ and objects’ query vertices. This is the case between R1

and R"USA" for the property path of P4, between R1 and R3 for the property
paths of P5 and P6, and between R2 and R3 for P5.

5.1 Query Optimization
Once the query is translated into its graph representation, classical join-order-
enumeration techniques [11,17] can be employed to find a cost-efficient execution
plan. We extend TriAD’s optimizer to handle SwPP queries by adding a new
operator—Distributed Reachability Join (DRJ)—and respective cost estimator
for property paths. Next, we briefly discuss these operators, which is followed by
a discussion of the cost estimation and join-order enumeration.

Physical Query Operators. TriAD employs three physical operators—coined
Distributed Index Scan (DIS), Distributed Merge Join (DMJ) and Distributed
Hash Join (DHJ)—for processing index scans and equi-joins among triple pat-
terns in SPARQL 1.0. Each of these operators works over the sharded partitions
of the triple indexes described in Section 4.1 in parallel. In short, the DIS op-
erators, which only occur at the leaves of the query plan, each build a relation
by invoking a parallel scan over the respective SPO permutation index that was
selected by the optimizer. The DMJ and DHJ operators each take two sharded
relations plus the join keys (i.e., the shared variables) as input and perform a
hash- or merge-join, respectively, to generate a new intermediate relation.

Distributed Reachability Join (DRJ). Analogously, we define a new DRJ
operator to process triple patterns with property paths in TriAD*. This enhanced
join operator takes two sharded relations Ri, Rj as input and returns as output
the subset of tuples in the cross-product Ri × Rj , for which all of the attached
join conditions C hold:
• for each shared variable ?x in C, a pair of tuples in Ri and Rj must have

equal values for ?x; and
• for each reachability predicate ?x ?y in C, a vertex s that becomes bound
to ?x by a tuple in Ri must be reachable to a vertex t that becomes bound
to ?y by a tuple in Rj .

The evaluation of the DRJ operator is backed by the index structures for prop-
erty paths described in Section 4.2. That is, for sets of source and target vertices
that become bound to the variables of a reachability predicate ?x ?y, the
DRJ operator performs a distributed set-reachability operation using the pre-
computed graph indexes over all partitions in parallel.

Join-Order Optimization. The DP table of the optimizer is initialized with
the cost estimates for the DIS operations of each query vertex Ri. The scan
costs for Ri depend on whether the constants in the triple pattern match a
respective SPO permutation index idx . For instance, if the subject and predicate
are constants and the object is a variable, choosing an SPO or PSO permutation
costs much less compared to any of the remaining permutations.

In the query graph, we introduce two special kinds of query vertices, namely
one for property paths with a constant subject or object, and one for property

paths with (at least one) unbound variable. Scanning a singleton tuple as input
has a unit cost of 1, while scanning a relation constructed for an unbound variable
corresponds to the number of triples in the subgraph Gp = (V p, Ep) of GD that
is induced by property p. In the latter case, we thus set the cardinality Card(Ri)
of a unary relation Ri that is constructed from all vertices in Gp to |V p|. As
an example, consider the property path ?x locIn* ?y, and let variable ?y be
unbound (i.e., not occurring as a shared variable in any other triple pattern).
Then the number of unique bindings for ?y is the number of vertices in the
induced subgraph consisting only of locIn edges. Equation 7 summarizes the
cost estimates we obtain for a DIS operator with respect to the precomputed
cardinalities Card(Ri) and available SPO permutations.

Cost(Ri) ∝

1 if Ri is a singleton tuple;
Card(Ridx

i)/k if Ri is sharded across k slaves
and matches SPO index idx ;

∞ otherwise.

(7)

Once the DP table is initialized with the costs estimates for the DIS opera-
tors, we continue to build the join tree in a bottom-up manner. At each DP step,
we merge two branches Qleft, Qright into a combined plan Q by a join operator
op together with a set of join conditions C. If there is at least one reachability
edge between two relations Ri, Rj that connect Qleft and Qright, a DRJ opera-
tor is employed. Note that each DRJ operator may invoke multiple distributed
set-reachability queries depending on the number of edges that connect Ri and
Rj . That is, for the case Qleft :=onDMJ (R1, R2) and Qright := R3 shown in
Figure 2, we need the DRJ operator to consider two reachability predicates ?p
workedWith* ?p1 and ?u sameState* ?u1. Choosing the correct order for exe-
cuting multiple reachability predicates thus is a sub-goal of overall optimization.
Assuming independence among the join conditions C, we plug in our precom-
puted index statistics as follows.

Cost(Qleft onop
C Qright) ∝

∑
Ci∈C

Card(Qleft
i) · Card(Qright

i) · Sel(Ci) (8)

While processing the conditions Ci ∈ C, we also iteratively estimate the
cardinality Card(Qi) of a subquery Qi of Equation 8 as defined next.

Card(Qi) :=

{
Card(Q1) if i = 1∏i−1

j=1 Card(Qj) · Sel(Cj) if i > 1
(9)

Thus, if Cj is a graph-reachability predicate, Sel(Cj) denotes the reachability
selectivity Sel(p) of the property p that is associated with Cj . If Cj refers to an
equi-join, Sel(Ci) denotes the precomputed join selectivity Sel(pi, pj) for the
pair of properties associated with the two triple patterns of the equi-join. The
combined cost for a (sub-)query Q then is defined recursively.

Cost(Q) =

max(Cost(Qleft), Cost(Qright))

+ Cost(Qleft onop
C Qright)

+ Cost(Qleft
op Qright)

(10)

Fig. 3. Example plan for the query of Figure 2

Here, Cost(Qleft onop
C Qright) denotes the cost of processing the join operator

op ∈ {DMJ,DHJ,DRJ} with Qleft and Qright as operands and join conditions C
(Eq. 8). Likewise, Cost (Qleft
op Qright) accounts for the shipping costs that
incur when the resharding of intermediate relations is required. The shipping
cost is proportional to the size and width of Qleft and Qright, respectively. Using
max(·, ·) as cost aggregation finally accounts for the parallel execution of the two
branches [11]. Figure 3 shows an example query plan for the query of Figure 2.

5.2 Distributed Query Processing
We embed the new DRJ operator into TriAD’s multi-threaded and asynchronous
processing framework to support the distributed execution SwPP queries. The
principal processing flow and communication protocol [11] remain unchanged
and merely require an additional initialization of the source and target vertices
for the distributed set-reachability queries, which are now triggered by the DRJ
operators at their respective positions in the query plan.

1. Scanning Base Relations. The leaves of the operator tree always repre-
sent distributed index scans (DIS). Each slave scans its local SPO permutation
index and selects tuples according to the constants associated with the DIS op-
erator. Due to the layout of our SPO indexes, this merely requires initializing an
iterator at the first tuple in a permutation list that matches the constants. For
a DRJ operator with a reachability predicate, whose source or target is a single
constant, a singleton relation is created directly from that constant. If the DRJ
operator has a reachability predicate with an unbound variable via a property
p, a (sharded) unary relation with the local vertices of V p is created.

2. Query-Time Sharding. During the execution of the query plan, reshard-
ing of intermediate relations may be required to ensure the proper execution of
joins (DMJ, DHJ) and set-reachability (DRJ) operations. With six SPO permu-
tations, each DMJ operator requires sharding of at most one of its base relations
at query time, while the DHJ operator requires sharding of at least one of its
intermediate relations, depending on the locality of the tuples with respect to
the join key. Sharding for the DRJ operator depends on the locality of the join
keys based on shared variables (if present) and the locality of the vertices that
become bound to the source and target variables of the reachability predicates.
Thus, resharding may be required for both input relations of a DRJ operator.

3. Parallel Execution of Operators. In addition to the concurrent ex-
ecution of the operators across the slaves, each slave also locally pursues the
execution of the query plan in a multi-threaded fashion. Starting from the leaves

of the query plan, all operators are locally executed in one separate thread for
each execution path (EP) (i.e., for each distinct leaf-to-root path) in the query
plan. Since slaves may take different amounts of time to execute an operator
over their local partition of the index, an asynchronous exchange of messages
for resharding the partial relations at query time makes this step more efficient
than a synchronous protocol. As soon as all the shards for the two input rela-
tions of a join operator are in place, the threads of the two EPs at each slave are
merged into one, and the next join operations can be invoked locally. For a DRJ
operator with a graph-reachability predicate, whose source or target variables
become bound to constants due to a shared variable, the respective source and
target sets for the distributed set-reachability query are initialized from those
constants. These are then resharded to the slaves that hold the graph partitions
containing the source and target vertices.

6 Evaluation
TriAD* is entirely implemented in C++. We used GCC-4.7.3 with -O3 optimiza-
tion and MPICH2-1.4.1 and Boost-1.55 as external libraries. We ran all of the
following experiments on a compute cluster with up to 11 nodes, out of which
1 was dedicated as the master node. Each node runs Debian 7.5, has 48GB of
RAM and an Intel E5530@2.40GHz quad core CPU with HT enabled.
Datasets.We used three large-scale, both real-world and synthetic, RDF datasets
for our evaluation: (i) LUBM-500M3 (scaled to 500 million triples) is generated
using UBA 1.7 in N3 format, (ii) Freebase-500M (with 500 million triples) refers
to a subset of a recent Freebase snapshot4 and (iii) a recent snapshot of DBpedia5
(with 417,445,957 triples).
Queries.Wemanually designed three queries for each dataset (L1–L3 for LUBM,
F1–F3 for Freebase, D1–D3 for DBpedia) to capture a mixture of reachability
queries and relational joins. All queries are listed in our Appendix.

6.1 Distributed SwPP Queries
We first discuss the distributed processing of SwPP queries for the fixed snap-
shot of the three datasets described above. For TriAD*, we used 5 slaves for this
setting (plus 1 master node). As competitor, we used the Virtuoso 7.1.0 native
RDF store, which is the only available RDF store we are aware of that supports
full property-path processing. We remark that the open-source edition of Virtu-
oso 7.1.0 does not support distribution. We thus compare against a centralized
installation of Virtuoso on one of our compute nodes.

A. LUBM-500M. The results for processing SwPP queries (L1, L2, L3)
are shown in Table 1(a). L1 resembles a single, non-selective reachability join.
Processing L1 thus involves an index scan for two input relations and a respective
evaluation of the reachability join. We can observe that the centralized version
of TriAD* performs better than Virtouso in a cold cache and comparable to
3 http://swat.cse.lehigh.edu/projects/lubm/
4 https://developers.google.com/freebase/data
5 http://downloads.dbpedia.org/2015-04/core/

http://swat.cse.lehigh.edu/projects/lubm/
https://developers.google.com/freebase/data
http://downloads.dbpedia.org/2015-04/core/

(a) LUBM-500 (query times in seconds)
#Slaves L1 L2 L3 Geo.-Mean

TriAD* 1 6.437 0.331 42.681 4.497
TriAD* 5 1.250 0.162 8.516 1.199
Virtuoso (cold) 1 10.050 12.624 57.776 19.425
Virtuoso (warm) 1 4.963 5.452 56.603 11.527

(b) Freebase-500 (query times in seconds)
#Slaves F1 F2 F3 Geo.-Mean

TriAD* 1 1.084 1.568 0.677 1.048
TriAD* 5 0.356 0.642 0.423 0.459
Virtuoso (cold) 1 6.590 4.112 13.809 7.206
Virtuoso (warm) 1 1.196 0.002 5.601 0.238

(c) DBpedia (query times in seconds)
#Slaves D1 D2 D3 Geo.-Mean

TriAD* 1 24.822 0.713 29.407 8.044
TriAD* 5 7.973 0.412 11.223 3.328
Virtuoso (cold) 1 46.185 19.352 317.899 65.741
Virtuoso (warm) 1 27.820 2.395 302.753 27.222

Table 1. Performance evaluation of SwPP queries

Virtuoso in a warm cache setting. We however achieve a significant scale-out for
L1 when we evaluate the query on a cluster of 5 slaves. Next, L2 is a selective
query with two regular joins and a single reachability join. For this query, we
can observe that TriAD* achieves a better performance compared to Virtuoso
in both the cold and warm cache settings. The non-selective query L3 contains
two reachability joins in conjunction with two regular joins. Also here, TriAD*
continues to perform better than Virtuoso under both a cold and warm cache
and further scales out very well in a distributed setting.

B. Freebase-500M. For Freebase, we considered three queries (F1, F2, F3)
which we designed along the lines of the L1, L2, L3 LUBM queries. The per-
formance of TriAD* for Freebase-500M shows a similar behavior as the one we
observed for LUBM-500M. The results are shown in Table 1(b). F1 again con-
sists of a single, non-selective reachability join. For this query, TriAD* performs
better than Virtuoso under a cold cache and has comparable performance to
Virtuoso in a warm cache setting. For the selective query F2, which comprises
of regular joins and a single reachability join, TriAD* performs better than Vir-
tuoso in the cold-cache setting, but Virtuoso with a warm cache outperforms
TriAD* in the both centralized and distributed settings. For the non-selective
query F3, which comprises of multiple reachability joins along with regular joins,
TriAD* performs significantly better than Virtuoso under both a cold and warm
cache. We remark that, for F3, Virtuoso tends to report different results over
repeated runs of the query, which indicates problems with their current support
for property paths.

C. DBpedia.We once more considered three queries (D1, D2, D3) consisting
of a mixture of relational joins and graph-reachability predicates for DBpedia.
The runtime performance of TriAD* in comparison with Virtuoso is shown in Ta-
ble 1(c). Also here, TriAD* continues to perform very well compared to Virtuoso
under both cold and warm cache settings.

6.2 Scalability Tests
We finally evaluated the scalability of TriAD* for SwPP queries by varying
the number of slaves from 1 to 10. For this evaluation, we again considered

LUBM-500M, Freebase-500M and DBpedia. The results under strong scaling
are shown in Figure 4(a) for LUBM-500M, in Figure 4(b) for Freebase-500M,
and in Figure 4(c) for DBpedia, respectively. As our last series of runs, we also
evaluated the performance of TriAD* under weak scaling, by increasing the size
(from 20%–100%) of the collections as well as the number of slaves (from 2–10)
in equal proportions. The results are shown in Figure 4(d)–(f).

Fig. 4. Strong (a)–(c) and weak (d)–(f) scalability of SwPP queries

7 Conclusions
We presented the architecture of TriAD*, which to our knowledge is the currently
fastest, distributed RDF engine that explicitly tackles the processing of prop-
erty paths according the recently updated SPARQL 1.1 specification. Building
on top of our TriAD engine, we leverage its multi-threaded and asynchronous
query processing framework to implement a new relational query operator to
tackle the kind of generalized graph-pattern queries that arise in SPARQL 1.1.
Our evaluation over both real-world and synthetic RDF collections confirm that
TriAD* achieves very significant gains compared to the only currently available,
native RDF store that supports SPARQL 1.1 with property paths. As for future
work, we intend to extend TriAD* to support also more complex property-path
variants, including paths with length restrictions, shortest paths, as well as paths
with more general regular expressions.

References

1. http://www.w3.org/TR/rdf-schema/.
2. http://www.w3.org/TR/rdf-sparql-query/.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-sparql-query/

3. http://www.w3.org/TR/sparql11-property-paths/.
4. P. Cudré-Mauroux et al. NoSQL databases for RDF: an empirical evaluation. In

ISWC, pages 310–325, 2013.
5. O. Erling and I. Mikhailov. Virtuoso: RDF Support in a Native RDBMS. In

SWIM, pages 501–519, 2009.
6. W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed reachability

queries. PVLDB, 5(11):1304–1315, 2012.
7. D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: The Very High

Idea. In FLAIRS, pages 131–135, 1998.
8. T. M. Forum. MPI: A Message Passing Interface, 1993.
9. S. Gao and K. Anyanwu. PrefixSolve: efficiently solving multi-source multi-

destination path queries on RDF graphs by sharing suffix computations. In WWW,
pages 423–434, 2013.

10. A. Gubichev, S. J. Bedathur, and S. Seufert. Sparqling Kleene: fast property paths
in RDF-3X. In GRADES, pages 14:1–14:7, 2013.

11. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: a distributed
shared-nothing RDF engine based on asynchronous message passing. In SIGMOD,
pages 289–300, 2014.

12. S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. Using graph summarization
for join-ahead pruning in a distributed RDF engine. In SWIM, pages 1–4, 2014.

13. S. Gurajada and M. Theobald. Distributed set reachability. In SIGMOD, pages
1247–1261, 2016.

14. S. Hagedorn, K. Hose, and K. Sattler. SPARQling Pig - Processing Linked Data
with Pig Latin. In BTW, pages 279–298, 2015.

15. J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF
Graphs. PVLDB, 4(11):1123–1134, 2011.

16. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

17. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113, 2010.

18. M. Przyjaciel-Zablocki, A. Schätzle, T. Hornung, and G. Lausen. RDFPath: Path
query processing on large RDF graphs with MapReduce. In ESWC, pages 50–64,
2011.

19. K. Rohloff and R. E. Schantz. Clause-iteration with MapReduce to scalably query
datagraphs in the SHARD graph-store. In DIDC, pages 35–44, 2011.

20. S. Sakr and G. Al-Naymat. Relational Processing of RDF Queries: A Survey.
SIGMOD Rec., 38(4):23–28, 2010.

21. S. Seufert, A. Anand, S. J. Bedathur, and G. Weikum. FERRARI: flexible and
efficient reachability range assignment for graph indexing. In ICDE, pages 1009–
1020, 2013.

22. L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Manegold. Column-store
support for RDF data management: not all swans are white. PVLDB, 1(2):1553–
1563, 2008.

23. M. Then, M. Kaufmann, F. Chirigati, T. Hoang-Vu, K. Pham, A. Kemper, T. Neu-
mann, and H. T. Vo. The more the merrier: Efficient multi-source graph traversal.
PVLDB, 8(4):449–460, 2014.

24. R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: a resilient
distributed graph system on Spark. In GRADES, 2013.

25. H. Yildirim, V. Chaoji, and M. J. Zaki. GRAIL: Scalable Reachability Index for
Large Graphs. PVLDB, 3(1-2):276–284, 2010.

http://www.w3.org/TR/sparql11-property-paths/

26. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for
web scale RDF data. PVLDB, 6(4):265–276, 2013.

27. X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE: Towards scalable I/O efficient
SPARQL query evaluation on the cloud. In ICDE, pages 565–576, 2013.

A SwPP Queries
A.1 LUBM Queries
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix ub: <http://www.lehigh.edu/∼zhp2/2004/0401/univ-bench.owl#>
L1: SELECT * WHERE { ?x rdf:type ub:ResearchGroup . ?x ub:subOrganizationOf* ?y.

?y rdf:type ub: University. }

L2: SELECT * WHERE { ?x rdf:type ub:FullProfessor. ?x ub:headOf ?d.
?d ub:subOrganizationOf* ?y. ?y rdf:type ub:University.}

L3: SELECT * WHERE { ?r1 rdf:type ub:ResearchGroup . ?r1 ub:subOrganizationOf* ?y.

?y rdf:type ub:University . ?r2 rdf:type ub:ResearchGroup. ?r2 ub:subOrganizationOf* ?y.}

A.2 Freebase Queries
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix fb: <http://rdf.freebase.com/ns>

F1: SELECT * WHERE { ?p fb:people.person.place_of_birth ?city .
?city fb:location.location.containedby* ?state.
?country fb:location.location.contains ?state. }

F2: SELECT * WHERE { ?p fb:people.person.place_of_birth ?city .
?city fb:location.location.containedby* ?state. ?country fb:location.location.contains
?state. ?p fb:award.award _winner.awards_won ?prize.
?p rdf:type fb:government.us_president. }

F3: SELECT * WHERE {?p fb:award.award_winner.awards_won ?prize. ?prize rdf:type* ?z .

?z fb:award.award_honor.ceremony> ?c.?p fb:people.person.sibling_s* ?p1.

?p1 fb:award.award_winner.awards_won ?prize. }

A.3 DBpedia Queries
Namespace prefixes available at: http://de.dbpedia.org/sparql?nsdecl
D1: SELECT * WHERE { ?s1 rdf:type ?s. ?s rdfs:subClassOf* ?o.

?o owl:equivalentClass yago-res:wordnet_medium_106254669 }

D2: SELECT * WHERE { ?s foaf:isPrimaryTopicOf wiki:North_Auburn,_California .
?s dbpedia-owl:isPartOf* ?c. ?x dbpedia-owl:hometown ?c. ?x foaf:isPrimaryTopicOf ?r. }

D3: SELECT * WHERE { ?s dbpprop:leaderTitle ?title. ?title rdf:type ?class.
?class rdfs:subClassOf* ?class2.
?class2 owl:equivalentClass yago-res:wordnet_abstraction_100002137 .
?s foaf:isPrimaryTopicOf wiki:North_Auburn,_California . ?s dbpedia-owl:isPartOf* ?c.
?x dbpedia-owl:hometown ?c. ?x foaf:isPrimaryTopicOf ?r. }

http://de.dbpedia.org/sparql?nsdecl

	Distributed Processing of Generalized Graph-Pattern Queries in SPARQL 1.1

