2,473 research outputs found

    Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems

    Full text link
    This work develops a nonlinear multigrid method for diffusion problems discretized by cell-centered finite volume methods on general unstructured grids. The multigrid hierarchy is constructed algebraically using aggregation of degrees of freedom and spectral decomposition of reference linear operators associated with the aggregates. For rapid convergence, it is important that the resulting coarse spaces have good approximation properties. In our approach, the approximation quality can be directly improved by including more spectral degrees of freedom in the coarsening process. Further, by exploiting local coarsening and a piecewise-constant approximation when evaluating the nonlinear component, the coarse level problems are assembled and solved without ever re-visiting the fine level, an essential element for multigrid algorithms to achieve optimal scalability. Numerical examples comparing relative performance of the proposed nonlinear multigrid solvers with standard single-level approaches -- Picard's and Newton's methods -- are presented. Results show that the proposed solver consistently outperforms the single-level methods, both in efficiency and robustness

    Numerical Verification of Affine Systems with up to a Billion Dimensions

    Full text link
    Affine systems reachability is the basis of many verification methods. With further computation, methods exist to reason about richer models with inputs, nonlinear differential equations, and hybrid dynamics. As such, the scalability of affine systems verification is a prerequisite to scalable analysis for more complex systems. In this paper, we improve the scalability of affine systems verification, in terms of the number of dimensions (variables) in the system. The reachable states of affine systems can be written in terms of the matrix exponential, and safety checking can be performed at specific time steps with linear programming. Unfortunately, for large systems with many state variables, this direct approach requires an intractable amount of memory while using an intractable amount of computation time. We overcome these challenges by combining several methods that leverage common problem structure. Memory is reduced by exploiting initial states that are not full-dimensional and safety properties (outputs) over a few linear projections of the state variables. Computation time is saved by using numerical simulations to compute only projections of the matrix exponential relevant for the verification problem. Since large systems often have sparse dynamics, we use Krylov-subspace simulation approaches based on the Arnoldi or Lanczos iterations. Our method produces accurate counter-examples when properties are violated and, in the extreme case with sufficient problem structure, can analyze a system with one billion real-valued state variables

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Analysis of parametric biological models with non-linear dynamics

    Full text link
    In this paper we present recent results on parametric analysis of biological models. The underlying method is based on the algorithms for computing trajectory sets of hybrid systems with polynomial dynamics. The method is then applied to two case studies of biological systems: one is a cardiac cell model for studying the conditions for cardiac abnormalities, and the second is a model of insect nest-site choice.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    Full text link
    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states may be harnessed for the realization of qubits. The strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.Comment: In press. 32 pages, 4 figures, 3 tables, Scientific Reports 201

    Fluid dynamics: an emerging route for the scalable production of graphene in the last five years

    Full text link
    Bulk applications of graphene in fields such as advanced composites, conductive ink, and energy storage require cheap and scalable graphene. Fortunately, in the last decade, liquid-phase exfoliation of graphite to give pristine graphene has been thought as a promising way to massive production of graphene at high efficiency and low cost, in terms of the cheap and abundant graphite source and a variety of cost-effective exfoliation techniques. Though many exfoliation techniques are available so far, this article will highlight the recent progress of fluid dynamics route which emerges as a promising scalable and efficient way for graphene production in the last five years. The emphasis is set on vortex fluidic devices and pressure- and mixer-driven fluid dynamics, with our perspectives on the latest progress, exfoliation mechanism, and some key issues that require further study in order to realize industrial applications.Comment: 18 figure

    Target Tracking in Wireless Sensor Networks

    Get PDF
    • …
    corecore