778 research outputs found

    CryptoMaze: Atomic Off-Chain Payments in Payment Channel Network

    Get PDF
    Payment protocols developed to realize off-chain transactions in Payment channel network (PCN) assumes the underlying routing algorithm transfers the payment via a single path. However, a path may not have sufficient capacity to route a transaction. It is inevitable to split the payment across multiple paths. If we run independent instances of the protocol on each path, the execution may fail in some of the paths, leading to partial transfer of funds. A payer has to reattempt the entire process for the residual amount. We propose a secure and privacy-preserving payment protocol, CryptoMaze. Instead of independent paths, the funds are transferred from sender to receiver across several payment channels responsible for routing, in a breadth-first fashion. Payments are resolved faster at reduced setup cost, compared to existing state-of-the-art. Correlation among the partial payments is captured, guaranteeing atomicity. Further, two party ECDSA signature is used for establishing scriptless locks among parties involved in the payment. It reduces space overhead by leveraging on core Bitcoin scripts. We provide a formal model in the Universal Composability framework and state the privacy goals achieved by CryptoMaze. We compare the performance of our protocol with the existing single path based payment protocol, Multi-hop HTLC, applied iteratively on one path at a time on several instances. It is observed that CryptoMaze requires less communication overhead and low execution time, demonstrating efficiency and scalability.Comment: 30 pages, 9 figures, 1 tabl

    Blockchain for Genomics:A Systematic Literature Review

    Get PDF
    Human genomic data carry unique information about an individual and offer unprecedented opportunities for healthcare. The clinical interpretations derived from large genomic datasets can greatly improve healthcare and pave the way for personalized medicine. Sharing genomic datasets, however, pose major challenges, as genomic data is different from traditional medical data, indirectly revealing information about descendants and relatives of the data owner and carrying valid information even after the owner passes away. Therefore, stringent data ownership and control measures are required when dealing with genomic data. In order to provide secure and accountable infrastructure, blockchain technologies offer a promising alternative to traditional distributed systems. Indeed, the research on blockchain-based infrastructures tailored to genomics is on the rise. However, there is a lack of a comprehensive literature review that summarizes the current state-of-the-art methods in the applications of blockchain in genomics. In this paper, we systematically look at the existing work both commercial and academic, and discuss the major opportunities and challenges. Our study is driven by five research questions that we aim to answer in our review. We also present our projections of future research directions which we hope the researchers interested in the area can benefit from

    Blockchain for Genomics:A Systematic Literature Review

    Get PDF
    Human genomic data carry unique information about an individual and offer unprecedented opportunities for healthcare. The clinical interpretations derived from large genomic datasets can greatly improve healthcare and pave the way for personalized medicine. Sharing genomic datasets, however, pose major challenges, as genomic data is different from traditional medical data, indirectly revealing information about descendants and relatives of the data owner and carrying valid information even after the owner passes away. Therefore, stringent data ownership and control measures are required when dealing with genomic data. In order to provide secure and accountable infrastructure, blockchain technologies offer a promising alternative to traditional distributed systems. Indeed, the research on blockchain-based infrastructures tailored to genomics is on the rise. However, there is a lack of a comprehensive literature review that summarizes the current state-of-the-art methods in the applications of blockchain in genomics. In this paper, we systematically look at the existing work both commercial and academic, and discuss the major opportunities and challenges. Our study is driven by five research questions that we aim to answer in our review. We also present our projections of future research directions which we hope the researchers interested in the area can benefit from

    Secure and Trustable Electronic Medical Records Sharing using Blockchain

    Full text link
    Electronic medical records (EMRs) are critical, highly sensitive private information in healthcare, and need to be frequently shared among peers. Blockchain provides a shared, immutable and transparent history of all the transactions to build applications with trust, accountability and transparency. This provides a unique opportunity to develop a secure and trustable EMR data management and sharing system using blockchain. In this paper, we present our perspectives on blockchain based healthcare data management, in particular, for EMR data sharing between healthcare providers and for research studies. We propose a framework on managing and sharing EMR data for cancer patient care. In collaboration with Stony Brook University Hospital, we implemented our framework in a prototype that ensures privacy, security, availability, and fine-grained access control over EMR data. The proposed work can significantly reduce the turnaround time for EMR sharing, improve decision making for medical care, and reduce the overall costComment: AMIA 2017 Annual Symposium Proceeding
    corecore